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When we use combinatorial models for real-life planning problems, we put
deterministic data in these models. In reality, this data is often uncertain.
Robust optimization tries to take this uncertainty into account. While different
approaches to robust optimization exist, this thesis looks at the concept of
recoverable robustness. Optimization with Recoverable Robustness tries to
find solutions that are robust to some scenarios by applying some means of
recovery to an initial solution.

A decomposition framework for reducing these problems into single-scenario
problems is presented. The seperate recovery decomposition generates seper-
ate problems for the initial and recovery parts of a solution, while the combined
recovery decomposition generates single problems for each scenario that de-
mand an initial solution as well as the recovery solution. We show how we can
use column generation to implement these decomposition methods. Example
applications to some robustness problems are shown, including robust knap-
sack problems, a robust weighted independent set problem and the demand
robust shortest path problem.

Different variants of the size robust knapsack problem (RKP) are explored
and exact algorithms for these problems are presented, as well as upper and
lower bound techniques. For one variant the decomposition framework is
used to design branch-and-price algorithms. These algorithms, along with
several others including local search and dynamic programming techniques,
are examined using experimentation on different sets of random instances.

We conclude that the seperate recovery decomposition yields nice results
when applied to some instance classes of the size robust knapsack problem.
We also conclude that the application of this framework to other problems is
an interesting field for future research and experimentation.
Keywords: recoverable robustness, robust knapsack problems, column generation,

dynamic programming, demand robust shortest path, Dantzig-Wolfe decomposition
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1. Introduction and Basic Knowledge

1.1. Introduction to Robustness

Suppose we are the management team of a repair facility with repair services on a broad
range of products, including kitchen machinery, vehicles, televisions, etc. Since we are
the only facility in a considerable area, we have more customers than we can handle.
While there are alternatives to in the next state, most customers have a strong preference
for our facility, because of the distance. Due to this luxury position, we have devised a
unique business model: people can bid on repairs. They tell us what they want to have
repaired and how much they want to pay for it, in addition to the repair costs. Two days
before the end of each week, we will decide which repairs to accept and which ones to
decline, with respect to our production capacity for the next week. Since we want to
make a nice living, we want to do this in a way that maximizes our profits. However, if
we decline a repair, the customer will go to a facility in the next state.

Solving this decision problem in an optimal way is not trivial. If we have a handful
of applications for repairs, we can solve them by hand. But if we have 100 applications
each week this will take too much work. Luckily, a lot of research has been done in the
fields of Operations Research and Combinatorial Optimization. These fields allow us to
create a mathematical model for our problem that can be solved by computers. In fact,
our problem is a Knapsack problem, a class of problems that has been researched a lot:
two full books ([MST90] and more recently [KPP04]) are available.

When we use such a model to solve our problem, we need to make a lot of assumptions
when we translate aspects of reality to numbers. Examples of such aspects are the amount
of time it takes to execute a certain repair, the availability of certain persons or machines,
the time at which a person takes a break, eats his lunch, etc. In many practical cases we
don’t know the exact values of all those things, so we tend to estimate them. However, in
estimation lies the risk of making errors, which can either lead to an infeasible planning
or lead to an unnecessary loss in production.

While accepting an unnecessary loss in production is often preferable to accepting a
plan that can’t be executed, there is a trade-off between the two in many cases. A very
unlikely scenario is the situation that a plane crashes down on your facility, halting all
production. If you want to take an extremely safe estimate, you would assume that, since
it might happen that a plane crashes down, your repair facility can’t produce anything
at all. Under this assumption the best strategy you can choose is to decline all repairs,
leaving your repair facility ineffective to generate any profit at all.

In a general sense, robustness is a property of the solution to a problem that expresses
the quality of the solution when applied to certain variations of the problem it was
constructed for. Such variations are called scenarios. This implies a solution can be
robust for certain scenarios, but not for other scenarios. Since in most cases only an
undesirable solution (like do nothing or buy everything) is feasible for all possible scenarios,
it is necessary to select the scenarios that are likely to occur. Now we can quote the
definition of robustness given by Stiller [Sti09]: “The fundamental idea of robustness is
to construct a solution that is feasible in all (likely) scenarios.”
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Now one could ask for the definition of likely, since this leaves a lot of room for
discussion. However, we assume that these likely scenarios are given when we have to
find a robust solution to a problem. In other words: the problem of finding the scope of
likely scenarios is not a part of the problem we will solve in this thesis (while potentially
being an interesting one).

A lot of research was done on ways to create robust solutions to optimization problems.
We have the field of Robust Optimization [BTGN09], the field of Stochastic Program-
ming [BL97] and the more recent field of recoverable robust optimization [LLMS07].
One concept is to work with different scenarios, where each scenario contains different
assumptions that can possibly occur together. In these cases our solution consists of two
part - the initial part contains the decisions that are initially taken and the recovery part
contains the decisions that are taken after it is known which scenario is realized.

A major difference between recoverable robust optimization and two-phase stochastic
programming lies in the objective. Recoverable robust optimization demands a solution
that is feasible for all scenarios when some restricted recovery method is allowed, without
considering any costs for the recoveries. Two-phase stochastic programming is concerned
with finding a solution with a good expected solution value, or a good worst-case value,
when we have a single set of first phase choices with imperfect information and multiple
sets of second phase choices with all information. In a certain sense, second phase
decisions (recourse decisions in the terminology of stochastic programming) are different
names for recovery. In recoverable robustness it is also assumed that the method of
recovery is limited to simple decisions that can be made by a person. However, two-phase
stochastic programming permits you to add constraints on your second phase variables,
which will also limit your means of recovery. In short, recoverable robustness deals with
the question “What is the best plan that can be made feasible by simple decisions on the
floor for each scenario?”, while two-phase stochastic programming deals with “How can
we make a plan that gives us the best expected or worst-case profit over each scenario?”

It is not very difficult to think of other real life examples where you have to plan
under uncertainty. One could think about a situation where we have to facilitate a group
of students with enough classrooms, but we don’t know exactly how many people will
enroll. While the construction of new buildings is impossible due to budget cuts, it is
possible to buy instant classrooms in a container. It is much easier to get a good deal on
the containers when you order them early, which implies lower costs for the containers.
However, buying a single container at the last moment is probably cheaper than buying
three unused classrooms early on. Modeling such a problem is much easier if we can
define different scenarios stating how large the group might be. In this case we want our
solution to be robust for different sizes of the group of students.

Another example is a case where we want to organize a conference in a field where a
lot of speakers are not on speaking terms with each other and won’t accept invitations if
someone they dislike is invited. Since these speakers are picking up fights all the time,
it is probable that in the period between inviting the speakers and the conference itself
some additional fights break out. Since we are a respectable conference with a policy to
deny any bribery by the tabloid press, we don’t want any conflicts to take place at our
conference. This means that, in case some new fights break out, we will have to cancel
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some speakers. However, the public has a preference for certain speakers and since we get
paid by the public, we want to select our speakers in such a fashion that we maximize
the expected profit we get from the public, regardless of the speakers we have to cancel.
In this case we want our solution to be robust with regard to the fights that can break
out between the speakers.

If we take a look at our repair facility example, we might want to take into account
the possibility for one of our machines to break down, reducing our production capacity
(since our people will need to spend time on the broken machine, instead of the repairs).
This gives us two scenarios: one where we have full production capacity for the next week
and one where a machine has broken down. Since a customer will go to a repair facility in
the next state after you decline his repair, you can’t call a customer telling “our machine
didn’t break down, so we can actually accept your repair which we declined earlier”.
However, calling a customer telling “our machine broke down, so we can’t finish your
repair this week” might be more acceptable, especially when you consider this option
during your planning process.

We can identify two different periods that are considered during planning. During the
initial period we have to make decisions while being uncertain about the scenario that
will occur. During the second period we know the occurring scenario and we have to make
decisions to turn our initial decisions into a feasible solution taking the recovery methods
into account. Since there is a distinction between the period where we have uncertainty
and the period where we know what scenario takes place, the recovery decisions are
limited by the initial decisions, depending on the method of recovery. This is the concept
we refer to as Recoverable Robustness.

In case of the repair facility example, we have to decide which repairs we will accept
initially. During recovery we want to decide which customers you need to call in case a
machine broke down (if it does that at all). Using this approach we may expect that we
are able to accept more repairs than under the safe assumption that we always have a
broken machine, but still remain feasible in cases where the machine indeed breaks down.

Of course there are some downsides to this approach. The first one is that the number
of possible decisions in our problem rises with the number of scenarios, since we can take
different decisions in each of the scenarios.

The second downside is the notion that it becomes more difficult to choose an initial
solution that fits all scenarios, depending on the number of restrictions due to recovery. A
consequence might be that we can’t apply well known efficient algorithms to the problem.

In this thesis we will explore the world between two-phase stochastic programming
and recoverable robustness. We will propose a general approach to use decomposition
techniques for linear programming with column generation to solve optimization problems
with this initial/recovery structure. Special attention goes to new robustness versions of
the Knapsack problem, where we will see that problems with certain restrictions can be
solved quite efficiently by specialized algorithms, while other restrictions will be solved
with the general linear programming technique.

First we will discuss some preliminary knowledge used for different techniques through-
out the thesis in Chapter 1. Then we will consider how we can extend problems to
robustness variants in Chapter 2. We introduce a general decomposition framework
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for robustness problems in Chapter 3 and discuss how it can be applied to the repair
facility problem, as well as the conference problem and a shortest path problem where
our destination is uncertain in Chapter 4.

A large number of algorithms for knapsack problems related to the repair facility
problem are discussed in Chapter 5 and finally some results from experiments based on
implementations of some of these algorithms are presented and discussed in Chapter 6.

1.2. Linear Programming

Linear Programming (LP in short) is an optimization technique that searches for a
solution to a vector of variables x such that the objective function z = cx is maximized
(or minimized) under a system of linear constraints Ax = b. This gives the following
general form for a Linear Program:

max ( or min ) cx

s.t. Ax = b

x ≥ 0

If we have integer constraints on some of the variables, we are talking about a Mixed
Integer Program (or MIP in short). When all variables have integer constraints, or are
binary, we talk about and Integer Linear Program (or ILP in short). If we calculate a
solution for the MIP or ILP while ignoring the integer constraints, we talk about the
LP-relaxation of the MIP or ILP.

Another popular type of relaxation is the Lagrangian Relaxation. Suppose our objective
is to maximize and we have a row i in our constraint system that reads aix ≤ bi and a row
j that reads ajx ≥ bj . We can relax these constraints by allowing that it may be violated
at a cost of λi and λj per unit. These λi and λj are called Lagrangean multipliers. We
remove the constraints, but we rewrite the objective to cx+ λi(bi − aix) + λj(a

jx− bj).
Of course, this concept can be done on any number of constraints, which will give us
the same number of Lagrangean multipliers. Now we need to choose the right values
for these Lagrangean multipliers. The problem of choosing these values is called the
Lagrangean dual problem. If our original objective was to maximize, we need to choose
our Lagrangean dual multipliers in such a fashion that we minimize the value of the
relaxed problem. If we were minimizing, we need to choose the Lagrangean multipliers
in such a way that we maximize the value of the relaxed problem. A good textbook on
all these concepts is [BJS04] and an overview of early results in Lagrangean Relaxation
is [Fis81]. An example and a more detailed explaining can be found in the appendices
under section A.1.

1.3. Column Generation

Column Generation is a technique where not all possible variables from the x vector are
considered directly when solving the problem. With column generation we start with a
restricted set of variables and solve the problem for this restricted set. As a byproduct of
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the simplex-method, which is used to solve an LP, we get a dual-vector π, which gives a
single value for each constraint (i.e. each row in the constraint matrix). Using this dual
vector, we can easily decide if we want to add a new variable x′ with a single column a′

in the constraint matrix and c′ in the objective function to our restricted problem for
the set of variables. If we are maximizing, we want to add the variable if πa′ < c′ and if
we are minimizing we want to add the variable if πa′ > c′. We call πa′ − c′ the reduced
costs of the variable (or column) x′. We can also refer to the dual-vector π as the shadow
prices of our current solution. In general, the problem where we search for an improving
variable using the shadow prices is called the pricing problem.

Suppose our objective is to maximize. If we solve our pricing problems to optimality
and are unable to find any column that improves our current solution after a while, we
know we have an optimal solution to the LP-relaxation of the problem. The value of this
solution is an upper-bound on the Integer Linear Program and if the current solution is
integer, the upper-bound is tight. Now suppose we stop producing columns, while there
are still improving columns. In this case we get a lower-bound on the LP-relaxation
(which is a lower-bound on the upper-bound). Additionally, any integer solution we are
able to find using the generated columns gives a lower-bound on the value of the optimal
solution. These observations are related to the Dantzig-Wolfe decomposition [DW60]
and the textbook [BJS04] gives an overview of duality theory. A more exact explanation
of the technique itself can be found in the appendices under section A.2.

1.4. Dantzig-Wolfe decomposition

Now suppose our constraint system has a specific form such that we can split the vector
x into k disjoint variable vectors x1, x2...xk, b into disjoint constraint vectors b0, b1...bk
and A into non-zero sub-matrices D1...Dk and F1...Fk. Using this approach we can write
Ax = b as

D1x
1 + D2x

2 + . . . + Dkx
k = b0

F1x
1 = b1

F2x
2 = b2

. . .
...

Fkx
k = bk

The decomposition was introduced by [DW60] and is based on the principle that we
can derive an extreme point in Ax = b by writing x as a linear combination of extreme
points in each of the Fkx

k = bk systems. In our restricted master problem we will use
variables λki to represent the ith extreme point xki of the Fkx

k = bk sub-problem. Note
that this λ has nothing to do with the Lagrangean multiplier λ. Using this approach,
we can use column generation to create a restricted master problem that combines the
extreme points xk for each k into x. This way, we have k different pricing problems, for
each of the Fkx

k = bk subsystems. This gives us the following restricted master problem:
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max or min
∑

k

∑
i(c

kxki )λ
k
i

s.t.
∑

k

∑
i(Dkx

k
i )λ

k
i = b0 duals: π0∑

i λ
k
i = 1 ∀k duals: πk

0 ≤ λki ≤ 1 ∀k, ∀i

Using the duals for a solution to the restricted master problem, we have a pricing
problem for each value of k:

max or min ckxk − (π0Dk)x
k − πkxk

s.t Fkx
k = bk

Using the current solution for the restricted master problem, we can find a new column
by solving the kth pricing problem and adding the extreme point found for the pricing
problem to our restricted master problem. A more thorough explanation of this principle
can be found in the appendices under section A.3.

1.5. Dynamic Programming

Another popular way to solve optimization problems is Dynamic Programming, was
introduced by Bellman [Bel57]. Dynamic Programming uses a recursive formulation of
the optimization problem to divide it into smaller sub-problems. A very simple example
is the situation where we want to calculate the nth number from Fibonacci sequence
F (n). We can use a recursive formulation to express this problem:

F (0) = 1

F (1) = 1

F (n) = F (n− 1) + F (n− 2)

If we take a look at the recursive formulation, we can see that finding the nth Fibonacci
number can be divided into the sub-problems of finding the (n − 1)th and (n − 2)th
Fibonacci number. If we use a naive recursive computer program to solve this equation,
it will have to do O(2n) additions. However, we can clearly see that we only need the
solution to the sub-problems F (0) . . . F (n − 1). If we use the memory to store these
values after we have calculated them, we only need to calculate n values, which takes only
O(n) additions, which is much better. Using the memory this way is called memoization
and is an important part of Dynamic Programming.

If we are looking for an optimal solution and Bellman’s Principle of Optimality [Bel57]
is applicable to our problem, we can use Dynamic Programming to find an optimal
solution to our problem. This principle states that if we are maximizing a value D(i),
where i represents the ith choice we are making, the optimality of D(i) only depends on
the optimality of values maxkD(i− k), where the values i− k are found in the recursive
definition of D(i). In this case, we call n in F (n) a state variable, since it identifies the
current state of the calculation. We may also use formulations that depend on more than
just one state variable.
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It is possible to create a recurrence for a problem that doesn’t adhere to Bellman’s
optimality principle. You could still use the recursion to find a solution to the problem,
but in that case you have no guarantee about the optimality of the solution the algorithm
will find.

1.6. Branch-and-Bound

Another common algorithm for optimization is the branch-and-bound method, introduced
by [LD60]. This algorithm is based on Depth-First Search, which is described in the
excellent textbook [CSRL01]. In addition to the traditional Depth-First Search, branch-
and-bound uses upper and lower bounds to eliminate parts of the search tree. Suppose we
are maximizing. We start with the depth-first method, until we find a feasible solution.
This solution is a lower bound on our solution. Now suppose we have an efficient way to
calculate an upper-bound for a certain node in the search tree. Before we expand such a
node, we calculate its upper bound and if its upper bound is equal to or lower than the
lower bound, we know that expanding this node will not lead to a better solution, if the
upper bound is valid.

It is very easy to combine branch and bound with Integer Linear Programming. If
the LP-relaxation of an ILP is integer, we know we have the optimal solution. If it has
variables with a fractional value, we can branch on a variable by setting its maximum
value to the fractional value rounded down and by setting its minimal value to the
fractional value rounded up. The value of the LP-relaxation gives a natural upper-bound
(in case of maximization). This technique can also be combined with column generation
if a good branching rule can be created. With column generation, it is necessary to
generate columns for each expanded node in the search tree. Such an algorithm is also
called Branch and Price and is described in [BJN+98].

1.7. Local Search

If it is too hard to find an optimal solution to the problem, it is also possible to use
techniques to find a good solution, or a solution that will be near optimality. Popular
techniques to do this are the local search techniques, the most important ones being
Hillclimbing, Simulated Annealing and Tabu-Search. An important aspect of local search
algorithms is the neighborhood of a solution. The neighborhood is defined by a number
of operations that can be performed on a current solution transforming it into another
solution. In case of the repair shop example, adding a certain order that is not scheduled
to the current schedule can be seen as an operation. Removing a scheduled order from
the current schedule is another operation. The set of solutions that can be reached by
performing these operations on a certain solution are called the neighborhood of that
solution.

Hillclimbing is the simplest of the local search algorithms and is described in [RN03].
It starts with a (possibly random) solution and tries all operations. An operation that
improves the value of the solution is chosen. You can vary the way an improving solution
is chosen: you can take the best improvement possible with regard to the complete
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neighborhood (which is an usual way for Hillclimbing), but you can also take the first
improvement you find (which is used during the experiments in Chapter 6). This is
repeated until no operation can be performed that will improve the current solution
and terminates. Hillclimbing walks directly to a local optimum. It is possible to run
Hillclimbing a number of times on different random starting solution, keeping the best
solution found.

Simulated Annealing was first described in [KGV83] and performs a random operation
and checks whether the value of the solution has improved. If it has, the operation
is accepted and the new solution becomes the current one. If it hasn’t improved, the
degradation of the value is weighed against the current temperature and a random
factor to decide whether the degradation should be accepted or declined. Over time, the
temperature will cool down in such a fashion that degradations are accepted less often.

Tabu-Search was introduced by [GL97] and checks all possible operations in each step
and takes the best possible neighbor (which may have a worse value) that is not the
the Tabu-list. The Tabu-list is a list of a certain constant length k that contains the k
last visited solutions (or properties of the k last visited solution). When we find a new
solution, we add it to the front of the tabu-list and remove the last element from the list.
If k has a large value, it is possible that all neighbors of the current solution are in the
Tabu-list. In such a case the algorithm terminates.

When using Local Search, it is important to choose a neighborhood that is appropriate
for the algorithm used. In case of Simulated Annealing and Tabu-Search, it is also
important to choose the values of the parameters in an appropriate fashion. More
information about algorithms for searching is given in the textbook [RN03].
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2. Models and Decomposition for Robustness Problems

2.1. Robustness Problems

When we consider some optimization problem, for example a Knapsack Problem, or
a Shortest Path problem, we have some question and we must decide on a (possibly
best) solution. If we consider the Shortest Path problem, our question can be written as
’Considering this graph G, what is the shortest path from node v to node w’. Normally,
we assume that in a single problem instance G, v and w are fixed. When we are dealing
with uncertainty, an example may be that we are unsure about which node will become
node w. The algorithm which calculates the shortest path, calculates all shortest paths
from a single source. If we are only uncertain about which node will become w, we
can run the shortest path algorithm, wait until we know the exact node w and use the
solution that was already calculated using the algorithm.

Waiting for information to become available can introduce higher costs for some
decisions. For example, if we would have to buy plane or train tickets, there is a big
chance they are cheaper if we buy them early on. Even if we assume we know the exact
price in the future, simply running the shortest path algorithm to calculate the shortest
path to all nodes won’t work. Another observation is the fact that if the edges in the
graph represent airline or train tickets, it is probable that you can’t sell them after they
are bought. This implies there is some constraint on the solution based on the moment
at which decisions are made. Making a decision at a certain moment will influence the
possible decisions at a later time.

We can make two important observations: in modeling robustness problems we are
confronted with decisions whose effects are uncertain and the problem model that takes
robustness into account can be seen as an extension of our regular problem models. When
we have an algorithm for such a regular problem model, this gives a lot of information
and insight into how we can solve such a model. Therefore, it would be preferable to
make use of this information when we extend such a model with the notion of robustness.

Suppose we are asked to solve a robustness problem by hand, but are given access to
an algorithm for the non-robustness variant. We could try to work on a what-if basis:
assume a single scenario happens and try to use the given algorithm on a problem instance
that represents this single scenario. If we repeat this for each scenario, we can try to
construct a solution to the robustness problem by combining the separate non-robust
solutions.

In this chapter we will discuss how we can use decomposition techniques to solve these
problems using such approach. In Sections 2.2 and 2.3 we will discuss the extension
of problems to take robustness into account. Then we will discuss the overview of the
framework and the existing models for robustness. In Sections 2.5 and 2.6 we will discuss
the computational methods from our framework.

2.2. Formal Problem Extension

When we work with robustness, we have two types of decisions: decisions that should
be taken now, which we will call initial decisions, and decisions that can be taken at a
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Figure 1: Representation of the Solution Structure of a Robust Problem

later time, which we will call recovery decisions. We are also confronted with different
scenarios, for which recovery may or may not be necessary given some initial solution.
We will introduce some notation:

• Scenarios We have a set S that contains possible scenarios, represented by indices
1 . . . |S|.

• Initial Variables The vector x contains decision variables that represent initial
decisions.

• Recovery Variables A vector ys contains decisions variables that represent re-
covery decisions for a single scenario s ∈ S.

• Initial Costs The initial costs can be represented using either a cost function f(x)
or a vector c1 in case of linear costs or profits in relation to the decision variables
in x.

• Recovery Costs The recovery costs for a scenario s can be represented using
either a cost function f(ys, s) or a vector c2

s in case of linear costs or profits in
relation to the recovery variables.

Besides having a distinction in types of variables, our constraints will also have a special
structure: we can have constraints on the initial decision variables (initial constraints),
on the recovery decision variables (recovery variable constraints) and constraints that
state what recovery options are possible given a certain initial solution, for a single
scenario (the recovery constraints). A representation of this structure and its relation to
the problem is presented in Figure 1.

Now let us consider the repair facility example. Our decision variables in x will model
the choices to accept or decline certain repairs initially. We can use the recovery decision
variables in the vector ys for a certain scenario s in two ways: they can model the choices
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to accept or decline certain repairs after the capacity becomes known or we can use them
to model the choice to reject a repair we accepted earlier. We will use the first option,
because this gives a nicer constraint.

The constraints in this example are the capacity constraint which we model using both
an initial constraint (for the initial capacity) and the recovery variable constraints (for
the recovery capacities). The constraint to decline repairs that have been accepted must
be modeled using recovery constraints, since it relates the initial decision variables to the
recovery variables. We will discuss this problem more thoroughly in Section 4.1.1.

2.3. Framework Overview

It is not difficult to see that if we have a pool of potential solutions for the ys vectors for
each s ∈ S and also a pool of potential solution for the x vectors, we can create a solution
for the problem by selecting a ys vector from each pool and a x vector from the pool, in
such a fashion that each selection for ys can be recovered from the selection for x. If we
have a simple method to see if a certain ys vector is recoverable from a certain x vector,
we can look at each x vector in the pool, and select the best matching ys vector for each
scenario s. This way, we can check for each vector if it can be made feasible for each
scenario at all and calculate the value of the best combination for each x vector. Now
let us assume that we can express these restrictions on the recovery by simple means
on these vectors. Since we can now check whether an initial and recovery solution are
compatible, we remain with a single problem: filling the pools with potentially interesting
solutions.

Our intuition tells us that it will be a lot easier to adapt an algorithm for the original
problem to be suitable for finding a single x or ys vector, than for finding the complete
solution, since finding a shortest path to a single sink or selecting repairs for a single
capacity gives less to worry about. Given some combination of vectors, we are interested
in finding vectors that improve the current situation. If we modify the costs or profits
of the variables in the vectors, we get different problems that may result in different
solutions. We must use some method to modify the objective of these pricing problems.

But what if we don’t want to express the compatibility of an initial and a recovery
solution by simple means? Suppose we have a pool for each scenario s, such that the
pool contains tuples (x, ys), which are combinations of a solution vector x and a solution
vector ys, such that ys is recoverable from x. If we select a tuple from each pool, such
that for each tuple the x part is equal to all the x parts of the other tuples we selected,
we have a valid solution to our problem. Now if we can adopt our original algorithm in
such a way that we can find interesting combinations of a x and a ys, we can use column
generation to find a solution to our problem. This time, the algorithm will give bonuses
and maluses on the variables in the x vector, that should be taken into account by the
algorithm.

We will refer to the first approach as the separate recovery decomposition, because we
need to find separate initial solution vectors x and vectors ys for the recovery solution
of each scenario s. We will refer to the second approach as the combined recovery
decomposition, since we need to find combinations of a x and a ys vector for each of the
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scenarios s. A schematic overview of the process of both decompositions is discussed in
Sections 2.5 and 2.6.

2.4. Models for Robustness and Disturbances

Now let us consider a general minimization problem

Pmin = min{f(x)|x ∈ X}

where x is a vector of decision variables and X is the set of feasible solutions (or feasible
region for the vector x).

When we consider robustness, we face the situation where we are uncertain about the
set X to a certain degree. This introduces the difficulty that we cannot simply take
any x ∈ X with a minimal value for f(x). The field of robust optimization ([BTGN09],
[BS04]) presents models for finding solutions that are feasible for likely disruptions in X.
However, since f(x) is unchanged, this approach may come with great costs regarding
the value of the objective.

The field of stochastic programming [BL97] presents models that consider the expected
value with regard to disturbances as an objective. The disturbances are modeled as
random vectors ξ, based on given probability distributions. In case of two-phase (or
multi-stage) stochastic programming, recourse actions are introduced, that may be taken
with respect to each realized vector ξ, a recourse matrix (which imposes limitations to
the recourse actions) and a technology matrix (which imposes limitations to between the
recourse actions and the solution).

More recently, the concept of recoverable robustness was introduced [LLMS07]. Recov-
erable robustness introduces a model where a basic problem, like Pmin is extended with a
set of scenarios S and a set of admissible recovery algorithms A. The result of recovery
algorithm A(x, s) ∈ A given a solution x and a scenario s, is a feasible solution for
scenario s that is recoverable from x. Now, a Recoverable Robust Minimization Problem
(RRPmin) is defined as

RRPmin = min{f(x) +
∑
s∈S

g(ys, s)|x ∈ X,A ∈ A,∀s ∈ S : A(x, s) = ys}

The relation between recoverable robustness and the other approaches is discussed in
[LLMS07]. To summarize, strict robust optimization has the disadvantage of “finding
unacceptably expensive or conservative solutions”[LLMS07]. There are some major
similarities between two-phase stochastic programming and recoverable robustness, but
stochastic programming puts an emphasis on the use of probability distributions for the
uncertainty and using expected costs for the optimization objective. In addition to this,
there is a difference in the use of a set of admissible recovery algorithms, and the use of
a technology and a recourse matrix.

For our models, we will consider a modification of the RRP . First we will restrict our
problem to a single admissible recovery algorithm A ∈ A. This is acceptable, since we
may solve our resulting problem for each A ∈ A and just take the best solution we find
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that way. In addition to this, we define two sets of feasible solutions (or feasible regions)
for each scenario s ∈ S. We define feasible scenario solution sets

∀s ∈ S : Y s ⊇ {ys|∃x : A(x, s) = ys}

While it is possible to use = instead of ⊇, our approach will still work if Y s contains
solutions that are not reachable trough recovery. Since these solutions are useless for our
final solution, we should try to avoid including these in our Y s sets as much as possible.
We define feasible recovery sets

∀s ∈ S : Rs = {(x, ys)|A(x, s) = ys}

Using these definitions, we reformulate the RRPmin to a Feasible Region Recoverable
Robust Minimization Problem (FRRRPmin). This problem is defined as

FRRRPmin = min{f(x) +
∑
s∈S

g(ys, s)|x ∈ X,∀s ∈ S : ys ∈ Y s,∀s ∈ S : (x, ys) ∈ Rs}

2.5. Separate Recovery Decomposition Model

Now suppose that FRRRP is difficult to solve. When we enumerate the full set X and
each set Y s and take the best possible combination that is in Rs, we get the best solution.
However, the number of combinations is usually very large, being |X|

∏
s∈S |Y s|. In

addition to this, we will ignore most of the solutions in these sets. The idea is to consider
only limited subsets for X and each Y s, that approximate the relevant parts of these
sets with regard to the FRRRP . We therefore introduce a set

X ′ ⊆ X

and sets
∀s ∈ S : Y ′s ⊆ Y s

We will now start with small sets, expanding these sets in an incremental way. We
propose the Separate recovery decomposition model, where we define a Separate Master
Problem SMP for finding a good combination based on our restricted sets, a Separate
Initial Pricing Problem SIPP for expanding the set X ′ and Separate Recovery Pricing
Problems SRPP s for expanding the sets Y ′s .

SMPmin = min{f(x) +
∑
s∈S

g(ys, s)|x ∈ X,∀s ∈ S : ys ∈ Y ′s, ∀s ∈ S : (x, ys) ∈ Rs}

Note how the SMP still contains the original set Rs - while the x and each ys are
chosen from the restricted sets, the SMP is still concerned with recovery. Since we want
to expand our restricted sets to let the SMP find better solutions, we will introduce
a function π and a function πs for each s ∈ S. The purpose of these functions is to
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Figure 2: Separate Recovery Decomposition Process Overview

pass information from the SMP to our pricing problems, in such a way that improving
solutions are found. Using these functions, we introduce the Separate Recovery Initial
Pricing Problem SIPP and a Separate Recovery Pricing Problem SRPP s for each
scenario s ∈ S.

SIPPmin = min{f(x)− π(x)|x ∈ X}

SRPP smin = min{g(ys, s)− πs(ys)|ys ∈ Y s}
We must note that the quality of the final solution to the SMP depends mostly on the π

and πs functions - if the optimal solutions are not found by the pricing problems, the SMP
just gives an approximation. The full process of the Separate recovery decomposition
is given in Algorithm 1, while Figure 2 gives an overview of this process. The major
advantage of this approach is that the pricing problems do have the nice property that
they are only defined in terms of a single feasible set X or Y s. If we have algorithms
available to find a solution to such a single, feasible set of solutions, we can embed these
algorithms in the process of finding solutions to a recoverable robustness problem.

2.6. Combined Recovery Decomposition Model

Let us consider a different way to decompose the FRRRP into sub-problems. The
Separate Combined Recovery Decomposition has a master problem that has to take
the recovery into account. We can create a different model, the Combined Recovery
Decomposition Model that moves the recovery into the sub-problems as well. For this
purpose, we introduce a Combined Master Problem CMP and a Combined Pricing
Problem CPP s for each s ∈ S. The FRRRP gives us a feasible recovery set Rs for each
scenario s ∈ S. In the CMP , we will consider restricted recovery sets R′s ⊆ Rs for each
s ∈ S.

CMPmin = min{f(x) +
∑
s∈S

g(ys, s)|∀s ∈ S : (x′s, y
s) ∈ R′s,∀s ∈ S : x = x′s}

This time, we have a single pricing problem for each scenario. We define a function
πs for each scenario, to provide the pricing problem with information from the current
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Algorithm 1 Scheme for the Separate Recovery Decomposition

x0 is some initial solution
Create a set X ′

Add x0 to X ′

Initialize Problem SIPP using X ′

for s ∈ S do
Create a set Y ′s

Calculate ys0 ← A(x0, s)
Add ys0 to Y ′s

Initialize Problem SRPP using Y ′s

end for
Initialize Problem SMP using X ′ and each Y ′s

while improvement do
Solve SMP
Calculate π
x′ ← SOLVE SIPP using π
if x′ improves SMP then

Expand X ′ to X ′ ∪ {x′}
end if
for s ∈ S do

Calculate πs
y′s ← SOLVE SRPP s using πs
if y′s improves SMP then

Expand Y ′s to Y ′s ∪ {y′s}
end if

end for
end while
return SOLVE SMP
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Figure 3: Combined Recovery Decomposition Process Overview

state of the CMP . These functions should be chosen in such a fashion that the resulting
solution for the CPP s can improve the solution space of R′s and thus of CMP .

CPP smin = min{g(ys, s)− πs(x)|x ∈ X, ys ∈ Y s, (x, ys) ∈ Rs}

Algorithm 2 Scheme for the Combined Recovery Decomposition

x0 is some initial solution
for s ∈ S do

Create a set R′s
Calculate ys0 ← A(x0, s)
Add (x0, y

s
0) to R′s

Initialize Problem CPP s using R′s
end for
Initialize Problem CMP using the generated sets
while improvement do

SOLVE CMP
for s ∈ S do

Calculate πs

(x′, y′s)← SOLVE CPP s using πs

if (x′, y′s) improves CMP then
Expand R′s to R′s ∪ {(x′, y′s)}

end if
end for

end while
return SOLVE CMP

Again, the quality of this method depends mostly on the quality of the πs functions.
The nice property of this decomposition is the fact that a single pricing problem CPP s

contains only the three feasible spaces X, Y s and Rs. If we can think of an algorithm
that finds both an initial and a recovery solution for a single scenario, we can use such
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an algorithm for the pricing problem. The process is formally presented in Algorithm 2
and an overview is given in Figure 3.

We could even consider the CPP smin in terms of the original problem RRPmin. Suppose
we have some πs. For each s ∈ S, let us find the solution to min{−πs(x)|x ∈ X} and let
us apply the recovery algorithm to find ys = A(x, s). We can add (x, ys) to R′s. While
quality depends on what πs is used, this approach can give an approximation to the
solution to CMPmin.
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3. The Column Generation Framework

3.1. Scenario Independent General Form

In this chapter we will consider how we can implement the framework using column
generation. To achieve this, it is necessary to take a look at linear programming techniques.
In this chapter we will formulate linear program for the master problems and show how
they can be used to implement the framework. We also show we can derive these
models by application of the Dantzig-Wolfe decomposition to a general linear program for
Recoverable Robustness Problems. In this section, we we will describe some properties
of robustness problems.

Let us consider the structure where we have a x variable vector for the initial solution
and multiple ys variable vectors for the recovery solution of each scenario s ∈ S. The
structure of the problem will follow a tree structure. Based on these variable vectors and
the presented structure, we will formulate some required properties of our problem.

• Scenario Independence (SI) The possible values of a single ys vector do only
depend on the values of the x vector, not on other ys

′
vectors such that s′ 6= s.

• Feasibility Algorithm (FA) This algorithm needs to find a feasible solution, or
be able to report that the problem is infeasible. This is to generate initial solutions
to initialize the LP models. An example for the KP is to return an empty knapsack.

• Linear Adaptable (Initial and/or Recovery) Objectives (LAO) The ob-
jective associated with a variable vector x or ys can be adapted by adding or
subtracting some value πi for each variable xi with regard to the original objective
factor c1

i . It is important that the algorithm we use to solve our sub-problems can
cope with such adaptations to the problem.

• Recovery Algorithm (RA) If there is a Recovery Algorithm, we have some way
to calculate the best solution vector ys for a given scenario s and a fixed vector
x. Recoverable Robustness implies such an algorithm exists. We can apply this to
each initial solution we have found so far to get a good solution to the full problem.

• Initial Solution Partitioning Method (IPM) To use branching in combination
with Column Generation, we need to be able to partition the solution space of the
initial solution into disjoint partitions. It is important that the other properties
still hold in each of these partitions. A possible way to do this, is by restricting
the domains of the variables. Suppose we can take a variable xi that currently
has a domain in the range {l . . . u} and change its domain to either {l + k . . . u} or
{l . . . u − k} for some u − l ≤ k > 0. We call this property Restrictable Variable
Domains (RVD) and IPM is implied by this property.

• Linear Recovery Constraints (LRC) A problem has linear recovery constraints,
if we can write the limitations between a certain recovery scenario vector ys and the
initial scenario vector x using two matrices A1, A2 and some vector of constants b
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Exact Solution Estimate Solution

SI SI
Both Decompositions IPM RA

FA FA

Separate Recovery Decomposition LAO LAO
LRC LRC

Combined Recovery Decomposition LAO1 LAO1

Table 1: Required properties for both decompositions and answer types

using either A1x+A2y
s = b, A1x+A2y

s ≤ b or A1x+A2y
s ≥ b for each possible

scenario s ∈ S.

The most important property is Scenario Independence. SI is very plausible, since it is
closely related to the tree-like structure of the robustness extension. The LAO property
can apply to only the initial variables (LAO1) or both (LAO). The Linear Recovery
Constraints are necessary in case of the separate recovery decomposition.

We can use the decompositions to calculate an exact solution, or to calculate an
estimate solution. The exact solution will use Branch-and-Price to find the exact solution
to the problem, while the Estimate Solution will give a lower and upper-bound on the
solution value, as well as an estimate solution itself.

In Sections 3.2 and 3.3 we will discuss a situation where we express the master problems
with a linear programming model to derive dual values for the pricing problems. In Section
3.4 we will show how to derive all linear programs involved using the Dantzig-Wolfe
decomposition.

3.2. Separate Recovery Decomposition

Now let us look at the separate recovery decomposition. We will assume Scenario
Independence, Linear Adaptable Objectives, Linear Recovery Constraints and a Feasibility
Algorithm. We have a variable vector x and variable vectors ys. Let us define a single
pool X ′, that contains fixed vectors with values for the x variables. Also, let us define a
pool Y ′s for each scenario s, that contains fixed vectors with values for the ys vectors.
Each pool will contain extreme points with indices k in pool X ′ and indices j in a pool
Y ′s for each scenario s ∈ S.

We can represent a full solution by selecting a single vector from the X ′ pool and
a single vector for each Y ′s pool, if we assume the selected vectors satisfy our recovery
constraint. Now let us consider binary variables uk, where each index k represents a
vector from pool X ′. Let us also consider binary variables vsj for each scenario s ∈ S,
where index j represents a vector from pool Y ′s.
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k : an index over the set of feasible initial solutions X
j : an index over the set of feasible recovery solutions Y s for scenario s
xk : the kth initial solution in X
ysj : the jth recovery solution in Y s for scenario s

uk =

{
1 the kth initial solution (i.e. xk) is selected
0 otherwise

vsj =

{
1 the jth recovery solution (i.e. ysj ) is selected for scenario s

0 otherwise

Now let us assume that each feasible recovery set Rs = {(xk, ysj )|A(xk, s) = ysj} is
bounded by a polyhedron, which implies that the limitation on recovery can be expressed
using linear constraints (this is the LRP-property from Section 3.1). Let us express these
feasible recovery sets using a linear system of equations. Now, for each s ∈ S, let us
introduce matrices As1, As2, vectors bs1 such that ysj is recoverable from xk if and only if

As1xp +As2y
s
j ≤ bs1

LSMPmin = min
∑
k

(c1xk)uk +
∑
s∈S

∑
j

(c2
sy
s
j )v

s
j

s.t.
∑
k

(As1xk)uk +
∑
j

(As2y
s
j )v

s
j ≤ bs1 ∀s ∈ S |S| dual vectors πs∑

k

uk = 1 dual πX∑
j

vsj = 1 ∀s ∈ S |S| duals πY
s

uk ∈ {0, 1} ∀k
vsj ∈ {0, 1} ∀s ∈ S, ∀j

Our main goal is to find new columns for the X ′ or Y ′s pools, that improve the current
solution. We can use the duals given by the current solutions to adapt the objectives
of our pricing problems. Since we assumed linear adaptable objectives, we can use the
duals to derive linear factors for the variables. If we take

∑
s∈S(πsA

s
1), we get a factor

for each variable in x. Also, if we take πsA
s
2, we get a factor for each variable in ys.

Using these factors and the LAO assumption, we can use the original algorithm (that will
take the original constraints into account) to find an interesting new column to improve
our current complete solution, or to detect that we cannot improve our current solution
further.

If we cannot improve the current solution, we might arrive at a situation where the
current solution is fractional. To calculate an estimate, we can assume we have a Recovery
Algorithm and run it on all solutions from our X ′ pool and choose the best one as the
solution. In that case we can use the value of the fractional solution to determine the gap
between the lower and the upper-bound of the derived solution. If we want to calculate

20



an exact solution and take a look at a variables that have different values in the selected
columns from pool X ′ (multiple columns must be selected, since the solution is fractional).
If we have RVD, we can branch on a variable that has a different value in the selected
columns by applying the assumption of restrictable variable domains. Suppose some
variable xi has value ω, we restrict the domain of xi by putting its upper bound to bωc
for a new branch and putting its lower bound to dωe for another new branch. This way,
we will forbid columns that have a value not inside the new domain of xi. By repeating
this process in the branches, all variables in x will be fixed eventually.

By branching based on a fractional solution, we know there must always be at least two
vectors in the X ′ pool that are selected fractionally. Since these vectors must differ in
some variable xi inside these vectors, the domain of this variable xi has enough freedom
to select either one of the vectors. Clearly, we can restrict the domain of this xi in such
a fashion that we forbid one of the vectors, while keeping the other vector feasible. The
advantage is that we always keep a feasible vector in the X pool. In case there is some
Y ′s pool that has no vectors that are recoverable from any vector in the X ′ pool, we
can use a Feasibility Algorithm to create feasible vectors. However, since the variables
in vectors of the Y s pools are not restricted at all, doing this is only necessary if we all
remaining vectors in the ′X are not recoverable for certain scenarios. When this is known
not to be the case, a Recovery Algorithm can be used on the remaining solutions in the
X ′ pool, instead of the Feasibility Algorithm. In our experience so far this aspect of
branching was not difficult to solve. However, one should keep this in mind when using
the technique. An obvious option is to see if one can add some fallback option to each of
the Y ′s pools, which has a bad objective value, but is recoverable from each conceivable
vector in the X ′ pool.

3.3. Combined Recovery Decomposition

While the Separate Recovery Decomposition tries to combine initial and recovery solutions
in such a fashion that they satisfy the recovery constraint, the Combined Recovery
Decomposition takes another approach: we try to combine combinations of initial and
recovery solutions in such a fashion that all initial solutions are equal.

The idea is that selecting the same initial solution for each scenario gives the same
solution as selecting a single initial solution and a recoverable solution for each scenario.
When we assume that the combinations of a initial and a recovery solution under
our consideration satisfy the recovery constraints, our main concern is to look for a
combination for each scenario with the only constraint that the initial solution of all
these combinations are equal.
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p : an index over the set of feasible initial solutions X
q : an index over the set of feasible recovery solutions Y s for scenario s
xp : the pth initial solution in X
ysq : the qth recovery solution in Y s for scenario s

Rs : the set containing all pairs (xp, y
s
q) ∈ X × Y s for scenario s ∈ S

such that ysq is recoverable from xp

wspq =


1 for scenario s the pth initial solution (i.e. xp) is selected,

the qth recovery solution (i.e. ysq) is selected,

(xp, y
s
q) ∈ Rs

0 otherwise

Now let us write the Combined Master Problem CMP as an ILP to get the Linear
Combined Master Problem LCMP:

LCMPmin = min c1x+
∑
s∈S

∑
(p,q)

(c2
sy
s
p)w

s
pq

s.t.
∑
(p,q)

wspq = 1 ∀s ∈ S |S| duals πs∑
(p,q)

xpw
s
pq − x = 0 ∀s ∈ S |S| dual vectors π′s

wspq ∈ {0, 1} ∀s ∈ S,
∀(p, q)

When we solve the pricing problems based on the duals we will eventually arrive at
a point where we cannot improve the current solution, we can use the pools to find
an estimate solution. This can be done either by grouping the vectors in the pools by
their initial solution parts and taking the best one, or by deriving a initial solution from
our xi variables and apply the recovery algorithm to find a full solution. If we want an
exact solution branching is necessary. This cannot be done on the xi variables in the
master problem, so it is necessary to branch on the solution space (ILM), for example by
branching on variables in the vector x in the pricing problems. Of course, partitioning
implies that we cannot select some vectors from the currents pools during the time we
remain in this branch. In some situations this may lead to a feasibility problem, which
can be solved by using a Feasibility Algorithm. If the Feasibility Algorithm yields no
feasible solution, we know the current branch is infeasible and we may stop exploring it.

3.4. Relation to the Dantzig-Wolfe Decomposition

We will now explore the relation between the two decompositions and the Dantzig-Wolfe
decomposition for Linear Programs. We will begin with a general form for linear programs
that represent the recoverable robustness problems in an ILP-form. We will use a variable
vector x to describe our initial decision variables and a variable vector ys for each s ∈ S
for the recovery decision variables for a scenario s.
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LRRPmin = min c1x+
∑
s∈S

c2
sy
s objective

s.t. As1x+As2y
s ≤ bs1 ∀s ∈ S recovery constraints

A3x ≤ b2 initial variable constraints
As4y

s ≤ bs3 ∀s ∈ S scenario constraints

We refer to this form as the LRRP. This general form removes the possibility to
express constraints that are not scenario independent, while allowing other forms of
direct dependence. Initial decisions go into the x vector, recovery decisions go into the ys

vectors. The constraints on the initial decisions states which initial solutions are feasible
and can be expressed using A3 and b2. The constraints on the recovery decisions for a
scenario s can be expressed using As4 and b3s. To express our recovery constraints we can
use the respective As1 and As2 matrices and the bs1 vector, for each scenario. Since we
have split our variables into different vectors, the costs of the variables will also be split
into separate vectors: c1 contains the costs of the initial decisions and each c2

s vector
expresses the costs for the recovery decisions for a certain scenario s.

3.4.1. Separated Recovery Decomposition

Let us take the LRRP from the last section. We will decompose it by separating the
initial and recovery vectors. The idea of the separated recovery decomposition is to
find initial and recovery solutions separately, by moving the A3x = b2 and As4y

s = bs3
constraints into separate pricing problems, retaining the link constraints As1x+As2y

s = bs1
in the master problem. In fact, this is a rather straightforward application of the Dantzig-
Wolfe decomposition, where the separate A3x = b2 and As4y

s = bs3 systems become the
sub-problems. The nice part about this is that it decomposes the problem into a single
sub-problem for the x vector and a single sub-problem for each separate ys vector.

min c1x+
∑
s∈S

c2
sy
s

s.t. As1x+As2y
s ≤ bs1 ∀s ∈ S

A3x ≤ b2
As4y

s ≤ bs3
To apply the Dantzig-Wolfe decomposition on this model, we need the representation

theorem. To simplify things, let us assume that the our solution space is bounded, so
may consider a simplified version of the representation theorem.

Theorem 3.1 (Representation Theorem for Bounded Sets, based on [BJS04]). Let
X = {x|Ax ≤ b, x ≥ 0} be a nonempty (polyhedral) bounded set. Then set of extreme
points {x̂1, . . . , x̂l} associated with X is nonempty and finite, while the set of extreme
directions is empty. Any point x̄ can be represented as a convex combination of extreme
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points, if and only if x̄ ∈ X, that is,

x̄ =

l∑
j=1

λj x̂j

l∑
j=1

λj = 1

λj ≥ 0 j = 1, 2, . . . , l

In the general case, the representation theorem includes extreme directions, which is
only necessary when we work with unbounded sets. A proof and more background theory
on the theorem can be found in many textbooks on Linear Programming, including
[BJS04]. The representation theorem can also be expressed on integer sets X, where
the representation can be achieved using the relation between integer extreme points
and integer extreme directions. For more information on Integer Linear Programming,
Column Generation, Branch and Price and the Dantwzig-Wolfe Decomposition, we refer
to [Van00]. This implies that the decomposition principles presented in the sequel also
work for ILP’s. For reasons of simplicity, we ignore the question whether we are dealing
with a LP or ILP and focus on the procedure itself.

We will transform the LRRP using the representation theorem. First we choose the
subsystems that we will represent using their extreme points. We select the subsystem
X = {xk|A3xk ≤ b2} and for each scenario s ∈ S a subsystem Y s = {ysj |As4ysj ≤ bs3}. We
introduce uk as a multiplier for the kth extreme points in X (so uk will substitute λk in
the representation theorem for set X), while vsj will be the multiplier for the jth extreme
point in Y s (so vsj will substitute λj in the representation theorem for set Y s). Doing
this, we get

min c1x+
∑
s∈S

c2
sy
s

s.t. As1x+As2y
s ≤ bs1 ∀s ∈ S

A3x ≤ b2
As4y

s ≤ bs3∑
k

xkuk = x∑
k

uk = 1∑
j

ysju
s
j = ys ∀s ∈ S∑

j

vsj = 1 ∀s ∈ S

uk ≥ 0 ∀k
vsj ≥ 0 ∀s ∈ S, ∀j

Now let us apply some substitutions : since we have
∑

k xkuk = x and
∑

j y
s
jv
s
j = ys,

we can remove the x and ys vectors from the problem. We substitute all occurrences of
x and ys with our new representation. This yields the following:
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min c1(
∑
k

xkuk) +
∑
s∈S

c2
s(
∑
j

ysjv
s
j )

s.t. As1(
∑
k

xkuk) +As2(
∑
j

ysjv
s
j ) ≤ bs1 ∀s ∈ S

A3(
∑
k

xkuk) ≤ b2

As4(
∑
j

ysjv
s
j ) ≤ bs3∑

k

uk = 1∑
j

vsj = 1 ∀s ∈ S

uk ≥ 0 ∀k
vsj ≥ 0 ∀s ∈ S,∀j

From this from, we remove the A3(
∑

k xkuk) ≤ b2 and As4(
∑

j y
s
jv
s
j ) ≤ bs3, ∀s ∈ S

subsystems by decomposing them to sub-problems. We also use the distributive law
from elementary algebra to tidy our objective and the recovery constraints. This way, we
finally derive the Linear Separate Master Problem (LSMP )

LSMPmin = min
∑
k

(c1xk)uk +
∑
s∈S

∑
j

(c2
sy
s
j )v

s
j

s.t.
∑
k

(As1xk)uk +
∑
j

(As2y
s
j )v

s
j ≤ bs1 ∀s ∈ S |S| dual vectors πs∑

k

uk = 1 dual πX∑
j

vsj = 1 ∀s ∈ S |S| duals πYs

uk ∈ {0, 1} ∀k
vsj ∈ {0, 1}

∀s∈S,
∀j

Now that we have defined our master problem, we will also derive the necessary pricing
problems. We will begin with the pricing problem for an initial solution. Now we
will consider the system for set X we removed from our master problem, including its
objective. This yields

min
∑
k

(c1xk)uk

s.t. A3(
∑
k

xkuk) ≤ b2

Since we want to use column generation, we will adapt the objective of this system to
take the duals of the master problem into account. In general, the reduced costs of a
new column in the master problem are denoted by c′ − z′, with c′ the costs of the new
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column and z′ the product of the current dual vector of the master problem and the
new column in the constraint matrix. In this case, a new column will have 1 in the row
with the πX dual and the extreme point itself for each of πs dual vectors, so for a certain
extreme point xk, we have zk = πX +

∑
s∈S πs(A

s
1xk) and since we enumerate over all

possible xk, we have z′ =
∑

k zkuk. The resulting system that takes these reduced costs
into account is

min
∑
k

(c1xk)uk −
∑
k

∑
s∈S

πs(A
s
1xk)uk − πX

s.t. A3(
∑
k

xkuk) ≤ b2

For practical purposes, we’d rather want a pricing problem that is concerned with the
original decision variables for X. To achieve this, we use the representation theorem
again. In the derivation of the master problem, we used the equation

∑
k xkuk = x to

substitute x for a representation in extreme points. This time, we will substitute the
extreme point representation with the original decision variables. We also simplify the
objective, which yields the final form of the Linear Separate Initial Pricing Problem
LSIPP .

LSIPPmin = min (c1 −
∑
s∈S

πsA
s
1)x− πX

s.t. A3x ≤ b2
This still leaves us with the Y s systems for each scenario s. We will apply a similar

procedure, starting with the basic system we have for each scenario s ∈ S.

min
∑
s∈S

∑
j

(c2
sy
s
j )v

s
j

s.t. As4(
∑
j

ysjv
s
j ) ≤ bs3

Again, we must take the reduced costs into account if we want to use column generation.
A recovery column for a scenario s will contain a 1 in the row that corresponds to the
πYs dual. In addition to that, the column will contain the extreme point in the rows that
correspond to the πs dual vector. Therefore, the reduces costs of a certain ysj vector are

c2
sy
s
j − πsAs2ysj − πYs . We include this in our system to get

min
∑
j

(c2
sy
s
j − πsAss)vsj

s.t. As4(
∑
j

ysjv
s
j ) ≤ bs3

Our last step is to apply the representation theorem again, this time using the
∑

j y
s
ju
s
j =

ys equation. We rearrange the factors in a nice way and we get the Linear Separate
Recovery Pricing Problem for scenario s ∈ S, LSRPP s
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LSRPP smin = min (c2
s − πsAs2)ys − πYs

s.t. As4y
s ≤ bs3

3.4.2. Combined Recovery Decomposition

Like the Separated Recovery Decomposition, the Combined Recovery Decomposition is
derived from LRRP. Let us consider its form one more time.

LRRPmin = min c1x+
∑
s∈S

c2
sy
s objective

s.t. As1x+As2y
s ≤ bs1 ∀s ∈ S recovery constraints

A3x ≤ b2 initial variable constraints
As4y

s ≤ bs3 ∀s ∈ S scenario constraints

We need to rewrite this general form to be able to retrieve the Combined Recovery
decomposition, by introducing some dummy variable vectors, x′s∀s ∈ S and making sure
they are always equal to variable vector x. This gives us the following form:

min c1x+
∑
s∈S

c2
sy
s objective

s.t. x = x′s ∀s ∈ S
As1x+As2y

s ≤ bs1 ∀s ∈ S recovery constraints
A3x ≤ b2 initial variable constraints
As4y

s ≤ bs3 ∀s ∈ S scenario constraints

It is easy to see that this will not change the possible solutions or the objective of the
problem. Now since we introduced variables that are equal to x, we can move some of
the constraint matrices that work on x to our new variables. We will first apply this
principle to the As1 matrices, yielding the following form:

min c1x+
∑
s∈S

c2
sy
s objective

s.t. x = x′s ∀s ∈ S
As1x

′s +As2y
s ≤ bs1 ∀s ∈ S recovery constraints

A3x ≤ b2 initial variable constraints
As4y

s ≤ bs3 ∀s ∈ S scenario constraints

This transformation is also acceptable, since the x vector will still be constrained by all
As1 matrices, due to the x = x′s constraints. Now we will apply the final transformation,
where we move the A3 matrix along the x = x′s constraints. This yields the final form,
the Transformed linear recoverable robustness problem TLRRP :
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TLRRPmin = min c1x+
∑
s∈S

c2
sy
s objective

s.t. x = x′s ∀s ∈ S
As1x

′s +As2y
s ≤ bs1 ∀s ∈ S recovery constraints

A3x
′s ≤ b2 ∀s ∈ S initial variable constraints

As4y
s ≤ bs3 ∀s ∈ S scenario constraints

Now let us consider the application of the representation theorem for bounded sets
(Theorem 3.1) on the TLRRP . For each scenario s ∈ S, we will consider a subsystem
Rs = {x′sp ysq |As1x

′s +As2y
s ≤ bs1, A3x

′s ≤ b2, As4ys ≤ bs3}. We will use the representation
theorem to represent a point x′sp y

s
q using a multiplier wspq. When we apply this to TLRRP ,

we get

min c1x+
∑
s∈S

c2
sy
s

s.t. x′s = x ∀s ∈ S
As1x

′s +As2y
s ≤ bs1 ∀s ∈ S

A3x
′s ≤ b2 ∀s ∈ S

As4y
s ≤ bs3 ∀s ∈ S∑

(p,q)

x′sp w
s
pq = x ∀s ∈ S∑

(p,q)

ysqw
s
pq = ys ∀s ∈ S∑

(p,q)

wspq = 1 ∀s ∈ S

wspq ≥ 0 ∀s ∈ S,∀pq

Now let us remove the x′s and ys vectors from the problem, using the equations∑
(p,q) x

′s
p w

s
pq = x and

∑
(p,q) y

s
qw

s
pq = ys. We now get

min c1x+
∑
s∈S

c2
s(
∑
(p,q)

ysqw
s
pq)

s.t. (
∑
(p,q)

x′sp w
s
pq) = x ∀s ∈ S

As1(
∑
(p,q)

x′sp w
s
pq) +As2(

∑
(p,q)

ysqw
s
pq) ≤ bs1 ∀s ∈ S

A3(
∑
(p,q)

x′sp w
s
pq) ≤ b2 ∀s ∈ S

As4(
∑
(p,q)

ysqw
s
pq) ≤ bs3 ∀s ∈ S∑

(p,q)

wspq = 1 ∀s ∈ S

wspq ≥ 0 ∀s ∈ S, ∀pq
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For each scenario s ∈ S, we move the As1, As2, A3 and A34 subsystems into a sub-
problem. This leaves us with the Linear Combined Master Problem, LCMP .

LCMPmin = min c1x+
∑
s∈S

∑
(p,q)

(c2
sy
s
p)w

s
pq

s.t.
∑
(p,q)

wspq = 1 ∀s ∈ S |S| duals πs∑
(p,q)

xpw
s
pq = x ∀s ∈ S |S| dual vectors π′s

wspq ∈ {0, 1} ∀s ∈ S,
∀(p, q)

Now, we have a subsystem for each scenario that contains the initial and recovery
systems.

min
∑
(p,q)

(c2
sy
s
p)w

s
pq

s.t. As1(
∑
(p,q)

x′sp w
s
pq) +As2(

∑
(p,q)

ysqw
s
pq) ≤ bs1

A3(
∑
(p,q)

x′sp w
s
pq) ≤ b2

As4(
∑
(p,q)

ysqw
s
pq) ≤ bs3

Now let us consider the reduced costs. We will generate columns for each scenario
s ∈ S, based on our pricing problem. Such a column will contain a 1 in the row of the
corresponding πs duals. The column will contain the x′sp part of the extreme point. For
a certain (p, q), we get a z′pq = πsxsp + pis. If we include the reduced costs in our system,
we get

min
∑
(p,q)

(c2
sy
s
p)w

s
pq −

∑
(p,q)

pisxsp − πs

s.t. As1(
∑
(p,q)

x′sp w
s
pq) +As2(

∑
(p,q)

ysqw
s
pq) ≤ bs1

A3(
∑
(p,q)

x′sp w
s
pq) ≤ b2

As4(
∑
(p,q)

ysqw
s
pq) ≤ bs3

Now we will transform this system into a pricing problem on the original decision
variables, using the representation theorem again. We use

∑
(p,q) x

′s
p w

s
pq = x and∑

(p,q) y
s
qw

s
pq = ys, to derive the Linear Combined Pricing Problem for scenario s ∈ S

(LCPP s),
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LCPP smin = min c2
sy
s − π′sxs − πs

s.t. As1x
′s +As2y

s ≤ bs1
A3x

′s ≤ b2
As4y

s ≤ bs3
While this is a less straightforward application of the Dantzig-Wolfe decomposition,

since the x vector remains in the master problem, the principle is exactly the same.

3.5. MiniMax Objective Functions

The normal objective functions are minimization and maximization. While these are
sufficient to express expected costs objectives, they cannot express objective where we
want to minimize our costs in the worst case scenario. For some problems it is easy to
point out the worst case scenario (with the knapsack problem one can see that the worst
case scenario is the scenario with the lowest value for the capacity constraint), but for
some problems it would be nice to take such an objective in account.

There is a simple trick to express such an objective in a linear program by using a
special variable and some additional constraint. In case of minimizing the costs of the
worst case scenario, we create a variable zmax, that will hold the highest costs of the
moment. With the additional constraints we will move the values of the c2

sy
s costs into

the variable. Since the initial costs are always the same, we will retain them in the
objective. This way, our general form is adapted into the following:

LRRP min
max

= min c1x+ zmax

s.t. zmax ≥ c2
sy
s ∀s ∈ S

As1x+As2y
s ≤ bs1 ∀s ∈ S

A3x ≤ b2
As4y

s ≤ bs3 ∀s ∈ S

Now the objective tells to give zmax the lowest possible value, while the constraints
state that zmax should at least have the value of each separate c2

sy
s. The result will be

that zmax will have the value of the highest c2
sy
s, which is exactly what we want.

In case of a maximization problem where we want to maximize our minimum profit,
we can use the same trick by introducing a zmin variable. In this case the general form is
altered in the following way:

LRRPmax
min

= max c1x+ zmin

s.t. zmin ≤ c2
sy
s ∀s ∈ S

As1x+As2y
s ≤ bs1 ∀s ∈ S

A3x ≤ b2
As4y

s ≤ bs3 ∀s ∈ S

Of course, changing the general form has a certain impact on both decompositions.
In the case of the separate recovery decomposition, the value of the scenarios is both
in the master problem and in the recovery recovery pricing problem. Moving c2

sy
s into
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constraints will create additional duals to take into account during the pricing problem.
In our original pricing problem, the value of c2

sy
s became the costs of a new column of

variable vsj . Let’s call these costs cjs. When we alter the original master problem, we get
the following:

LSMP min
max

= min
∑
k

(c1xk)uk + zmax

s.t.
∑
j

(c2
sy
s
j )v

s
j ≤ zmax ∀s ∈ S |S| duals: πzs∑

k

(As1xk)uk +
∑
j

(As2y
s
j )v

s
j ≤ bs1 ∀s ∈ S |S| dual vectors πs∑

k

uk = 1 dual πX∑
j

vsj = 1 ∀s ∈ S |S| duals πYs

uk ∈ {0, 1} ∀k
vsj ∈ {0, 1} ∀s ∈ S, ∀j

Since the initial pricing problem LSIPP does not contain the y variables or their
prices, this problem remains unchanged (i.e. LSIPP min

max
= LSIPPmin). Since the

recovery pricing problems contain these values, we need to adapt them. This means
that we need to multiply c2

sy
s with the dual from the master problem. This gives us the

following adaptation of the recovery pricing problems:

LSRPP smin
max

= min (−πzsc2
s − πsA2

s)y
s − πYs

s.t. As4y
s ≤ bs3

The nice thing about this modification is the fact that only the objective of the pricing
problem changes. This implies that in all cases where we have an efficient algorithm for
the pricing problem that has no assumptions on the costs of the pricing problem, we can
keep using it when we reformulate our problem with a minimax objective.

The same property holds for the combined recovery decomposition. The process is
more or less the same: we change the objective of the master problem into the following
by adding a couple of constraints:

LCMP min
max

= min c1x+ zmax

s.t.
∑
(p,q)

(c2
sy
s
q)w

s
pq ≤ zmax ∀s ∈ S |S| duals: πzs∑

(p,q)

wspq = 1 ∀s ∈ S |S| duals πs∑
(p,q)

xpw
s
pq − x = 0 ∀s ∈ S |S| dual vectors π′s

wspq ∈ {0, 1} ∀s ∈ S,
∀(p, q)
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The new duals πzs are added to the objective function of the pricing problems. Again,
the constraints of the pricing problem remain unchanged.

LCPP smin
max

= min −π′sx′s − (πzsc
2
s)y

s − πs
s.t. As1x

′s +As2y
s ≤ bs1

A3x
′s ≤ b2

As4y
s ≤ bs3

3.6. Scenario Generation

When we consider minimax objectives, we can make the observation that in certain
cases our objective value will be determined by a small number of scenarios. These are
the scenarios that have the worst possible solution in the current situation. In certain
cases it can be a good idea too start with only a restricted number of scenarios in the
decomposition model, search for a solution and apply the recovery algorithm for the
unconsidered scenarios on the initial solution found. If we get a scenario that yields a
solution which is worse than the worst solution in our restricted model, we can add that
scenario to the model, solve it with the solution we had as a starting point and repeat
this process, until we cannot find a scenario that exceeds the worst solution so far.

Additionally, it is thinkable to use this approach in different situations. For example
when only feasibility is our concern, we can use this approach to concentrate the process
on scenarios that yield no feasible solution in the current situation, instead of all scenarios
at once.

There is a clear relation between column generation and this approach: where column
generation is an approach that tries to find a good solution by finding new variables that
may improve the current solution, instead of considering all variables at once. Scenario
generation tries to find a scenario that does not fit well to the current solution, instead
of considering all scenarios at once.
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4. Example Decompositions for Robustness Problems

4.1. A Classroom Problem Example

Now let us consider the classroom problem. We need to buy instant classroom-containers
for a uncertain number of students. We may buy some classrooms initially for 3 units
of money. We may take an option on classrooms for 2 units of money. If we know the
exact number of students, we may buy classroom we took an option on for an additional
2 units of money. If we didn’t take an option, we still may buy classroom for 10 units of
money, after we know the exact number of students.

There is a probability of 0.6 that 110 students will enroll, a probability of 0.3 that 210
students will enroll and a probability of 0.1 that 300 students will enroll. Let us introduce
a variable x1 for the initial classrooms we buy and a variables x2 for the number of
options we take initially. We introduce variables ys1 for the number of classrooms we buy
using an option, while ys2 is number of classrooms we buy in scenario s ∈ S. When we
formulate this problem as an ILP, we get the following ILP:

CP =
min 3x1 +2x2 +1.2y1

1 +6y1
2 +0.6y2

1 +3y2
2 +0.2y3

1 +1y3
2

s.t. 35x1 +35y1
1 +35y1

2 ≤ 110
35x1 +35y2

1 +35y2
1 ≤ 210

35x1 +35y3
1 +35y3

1 ≤ 300
x2 −y1

1 ≥ 0
x2 −y2

1 ≥ 0
x2 −y3

12 ≥ 0
x1, x2, y1

1, y1
2, y2

1, y2
2, y3

1, y3
2 ∈ {0 . . . 10}

Since we have no real constraint on the initial solution, we will use the Combined
Recovery Decomposition. First we derive the pricing problem, by filling in the LCMP
from Section 3.3. We introduce indices p, q on the possible combinations for the x and ys

variables. We introduce x1
p as the value of x1 in solution p, while x2

p is the value of x2 in
solution p. This gives us the following Combined Master Problem:

CP − LCMP = min 3x1 + 2x2 +
∑
s∈S

∑
p,q

csqw
s
pq∑

p,q

wspq = 1 ∀s ∈ S duals: πs∑
p,q

x1
pw

s
pq = x1 ∀s ∈ S dual: π1∑

p,q

x2
pw

s
pq = x2 ∀s ∈ S dual: π2

Since we have three scenarios, we have three Combined Pricing Problems associated
with this problem. By filling in the LCPP s from Section 3.3 for each scenario s ∈ S, we
get the following pricing problems:
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CP − LCCP 1 = min −π1x1 −π2x2 +1.2y1
1 +6y1

2 −π1

s.t. 35x1 +35y1
1 +35y1

2 ≤ 110
x2 −y1

1 ≥ 0
x1, x2, y1

1, y1
2 ∈ {0 . . . 10}

CP − LCCP 2 = min −π1x1 −π2x2 +0.6y2
1 +3y2

2 −π2

s.t. 35x1 +35y2
1 +35y2

1 ≤ 210
x2 −y2

1 ≥ 0
x1, x2, y2

1, y2
2 ∈ {0 . . . 10}

CP − LCCP 3 = min −π1x1 −π2x2 +0.2y3
1 +1y3

2 −π3

s.t. 35x1 +35y3
1 +35y3

1 ≤ 300
x2 −y3

1 ≥ 0
x1, x2, y3

1, y3
2 ∈ {0 . . . 10}

This is just a simple example of the Combined Recovery Decomposition, on a rather
easy problem. In the following sections, we will show the application of the framework to
more well-known problems.

4.1.1. A Robust Knapsack Problem

Let us consider the classic Knapsack problem. We have some set of items, each with a
unique index i from the set i and a given profit ci and a given weight ai. We also have
a single capacity b. The problem states: what is the best possible subset of items with
respect to their profits, that does not exceed capacity b with respect to their weights? It
is often used as an example for an Integer Linear Program:

max
∑
i∈I

cixi

s.t.
∑
i∈I

aixi ≤ b

xi ∈ {0, 1} ∀i ∈ I

If we take a look at this problem, we can see that it satisfies the restrictable variable
domains (RVD). If a variable is fixed to 0, we can remove that item from the problem and
ignore it when we solve it. If we fix it to 1, we can reduce the capacity b by it’s weight
ai, remove it from the problem and add its profit ci to the total profit after we found
the solution to the reduced problem Additionally, linear adjustable objectives (LAO),
are also implied. If an item has a negative profit, we can remove it from the problem
and ignore it. Otherwise, we just add or remove some constant from its ci and solve the
problem like normal.

Let us consider the example we mentioned earlier: the factory that has to make choices.
In fact, this problem is a simple variant of the knapsack problem, where in the first place
we have a certain high knapsack bound b1 that we should fill. During recovery we will be
presented with a lower knapsack bound bs, depending on a scenario s. Let us assume
that each scenario has a certain probability ps and we want to maximize the expected
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profit after recovery. We have a set of items I, where ci is the profit of an item i and ai is
it’s size. We have a vector x, that has a binary variable xi for each item in I, telling if we
should select it initially. We also have a vector ys for each scenario s, that has a binary
variable ysi for each item in I, telling we should keep item i from the initial solution in
the recovery solution for scenario s. We get the following Linear Recoverable Knapsack
Problem with Recovery by Removal (LRKP −R):

LRKP-R = max
∑
i∈I

p0cixi +
∑
s∈S

∑
i∈I

psciy
s
i

s.t.
∑
i∈I

aixi ≤ b∑
i∈I

aiy
s
i ≤ bs ∀s ∈ S

xi ≥ ysi ∀i ∈ I, ∀s ∈ S
xi, y

s
i ∈ {0, 1} ∀i ∈ I, ∀s ∈ S

It is clear that this problem has linear recovery constraints. Additionally, the problem
is almost always feasible: only if our capacity is negative, we cannot find a feasible
solution, otherwise we can ignore all items and take an empty knapsack. This principle
can be translated to a simple feasibility algorithm (FA). Also, we can express the recovery
problem that may be solved by a recovery algorithm (RA) as follows: suppose we have
some items selected initially and we want to find a recovery for a scenario s. Suppose the
sum of the weights is initially larger than the capacity bs. We can express this recovery
problem as a single knapsack problem: select items from the items selected initially
with maximum profit such that capacity bs is not exceeded. If it is not larger, we can
just take the initial solution as our recovery solution. We apply the separate recovery
decomposition by defining χk as the kth initial solution added to our master problem
and φsj as the jth recovery solution for scenario s added to our master problem.

LSMP-RKP-R = max
∑
k

cXk x
′
k +

∑
s∈S

∑
j

cY
s
j y′sj

s.t.
∑
k

x′k = 1 dual: π∑
j

y′sj = 1 ∀s ∈ S duals: πs∑
k

χk,ix
′
k −

∑
j

φsj,iy
′s
j ≥ 0 ∀s∈S,

∀i∈I duals: πsi

x′k, y
′s
j ∈ {0, 1}

∀s∈S,
∀j,∀k
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LSIPP-RKP-R = max
∑
i∈I

(p0ci −
∑
s∈S

πsi )xi − π

s.t.
∑
i∈I

aixi ≤ b

xi ∈ {0, 1} ∀i ∈ I

LSRPP-RKP-Rs = max
∑
i∈I

(psci − πsi )ysi − πs

s.t
∑
i∈I

aiy
s
i ≤ bs

xi ∈ {0, 1} ∀i ∈ I

Both pricing problems leave us with a single knapsack constraint. Both pricing problems
are actually just knapsack problems with the same structure as the classic knapsack
problem. Now let us apply the combined recovery decomposition. We introduce χsj as
the jth initial solution for scenario s added to the master problem. We get:

CMP-RKP-R = max
∑
i∈I

p0cixi +
∑
j

cY
s
j y′sj

s.t.
∑
j

y′sj = 1 ∀s ∈ S duals: πs∑
j

χsj,iy
′s
j = xi ∀s ∈ S, ∀i ∈ I duals: πsi

xi ∈ {0, 1} ∀i ∈ I
y′sj ∈ {0, 1} ∀s ∈ S, ∀i ∈ I

CPP-RKP-Rs = max
∑
i∈I

(p0ci − πsi )xi +
∑
i∈I

psciy
s
i − πs

s.t.
∑
i∈I

aixi ≤ b∑
i∈I

aiy
s
i ≤ bs

xi ≥ ysi ∀i ∈ I
ysi ∈ {0, 1} ∀i ∈ I, ∀s ∈ S

This is not a basic knapsack problem. We could apply the separate recovery decompo-
sition to decompose this pricing problem into two separate problems with the separate
recovery decomposition, but a nicer approach is to use a specific algorithm: a Dynamic
Programming approach is presented in Section 5.3.5.

4.2. A Robust Weighted Independent Set Problem

Now let us consider the basic weighted Independent Set problem. Given a graph G with
node set V and an edge set E, i.e. G = (V,E) and a weight function w that gives the
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weight of a certain node v ∈ V , we are asked to find a subset of nodes with a maximum
sum of the weights of the nodes and the constraint that if there is an edge (u, v) ∈ E,
we may not have both node u and node v in the set. If we express this problem as an
Integer Linear Program, we get:

LWIS = max
∑
v∈V

w(v)xv

s.t. xu + xv ≤ 1 ∀(u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ V

Let us consider restrictable variable domains (RVD). When we fix the variable xv of a
node v to 1, we cannot select any neighbors, which implies that we can remove node v
and all its neighbors from the problem. If we fix the variable xv to 0, we can just remove
that node from the problem. Again, the linear adjustable objectives (LAO) are rather
trivial. If a certain node v has a negative profit w(v), we can just ignore it, or remove it
from the problem. Otherwise, we can easily change or add a factor to a certain w(v) to
derive a new weighted independent set problem.

Now let us extend this basic problem to a problem with uncertainty. We will consider
a graph G with a fixed node set V and weights w(v) ∈ Z. We will use the conference
organization example from the introduction in Section 1.1. We define a initial edge set
E1 and realized edge sets E2

s , such that E1 is a subset of each realized edge set E2
s . So

each edge set E2
s introduces new edges with respect to E1. Now let us find a maximum

weighted independent set as an initial solution, such that when we get a realized edge
set we may only remove nodes from the weighted independent set to become feasible.
In a sense looks a bit like the structure of the knapsack problem. We have an initial
binary variable vector x that tells us for each v ∈ V if that node is selected initially. We
also have a binary variable vector ys for each scenario s that tells us for each node if it
remains selected in the recovery solution for scenario s. We have a probability ps for
each scenario s. We get the following program:

LRWIS-R = max
∑
v∈V

psw(v)ysv

s.t. xu + xw ≤ 1 ∀(u,w) ∈ E1

ysu + ysw ≤ 1 ∀(u,w) ∈ E2
s ,∀s ∈ S

xv ≥ ysv ∀s ∈ S,∀v ∈ V
xv, y

s
v ∈ {0, 1} ∀v ∈ V,∀s ∈ S

Again, the linear recovery constraints (LRC) are clearly implied by the formulation.
Additionally, feasibility is not a very large issue: we only have infeasibility in a case where
two nodes that are neighbors are fixed to 1 in the initial or recovery variable vectors or a
case where a node is fixed to 1 in the recovery vector and to 0 in the initial vector. In
other words: if we put all unrestricted variables to 0 and our solution remains infeasible,
the current problem is infeasible. Now let us apply the separate recovery decomposition.
The following integer linear programs are derived:
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LSMP-WIS-R = max s∈S
∑
j

(cY
s

j y′sj

s.t.
∑
k

x′k = 1 dual: πX∑
j

y′sj = 1 ∀s ∈ S duals: πYs∑
k

χ(k, v)x′k ≥
∑

j(φ
s
j,vy
′s
j ) ∀v ∈ V,∀s ∈ S duals: πvs

LSIPP-WIS-R = max −
∑
v∈V

∑
s∈S

πvsxv + πX

s.t. xu + xv ≤ 1 ∀(u, v) ∈ E1

xv ∈ {0, 1} ∀v ∈ V

LSRPP-WIS-Rs = max
∑
v∈V

(psw(v)− πvs )ysv − πYs

s.t. ysu + ysv ≤ 1 ∀(u, v) ∈ E2
s

ysv ∈ {0, 1} ∀v ∈ V

Again, these pricing problems follow the structure of the weighted independent set
problem. This result is similar to the result of the decomposition of the knapsack
extension. This is not really surprising, since both problems deal with subset selection
and both problems have the same recovery constraints. This implies that the interaction
between the master and pricing problems is very similar. In case of the combined recovery
decomposition, we will also see something that is similar to the combined recovery
decomposition of the knapsack problem. We use the same conventions we used with the
separate recovery decomposition.

LCMP-WIS-R = max
∑
s∈S

∑
j

cY
s

j y′sj

s.t.
∑
j

y′sj = 1 ∀s ∈ S duals: πs∑
j φ

s
j,vy
′s
j = xv ∀s ∈ S,∀v ∈ V duals: πsv

LCPP-WIS-Rs = max
∑
v∈V

psw(v)ysv −
∑
v∈V

πsvxv − πs

s.t. xu + xv ≤ 1 ∀(u, v) ∈ E1

ysu + ysv ≤ 1 ∀(u, v) ∈ E2
s

xv ≥ ysv ∀v ∈ V
xv ∈ {0, 1} ∀v ∈ V
ysv ∈ {0, 1} ∀v ∈ V
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The resulting pricing problem asks for a initial and a recovery solution for a single
scenario, which is not a classic independent set problem. However, there is a way to
reduce this problem to am independent set problem. Let us build a new graph. For each
node v in the original graph, we will add a node v′ and a node v′′ to the new graph,
where a selection of v′ in the independent set implies that we select v only initially, while
selection of v′′ implies that we select v in both initially and after recovery. Clearly, we
may not select v′ and v′′ at the same time, so we add an edge (v′, v′′) to our new graph.
The weight of v′ in our independent set problem will be −πsv and the weight of v′′ will be
−w(v)− πsv.

Now we will consider all edges (u, v) in E1. Since these edges will also be in E2
s , we

know that we may never select any combination of v′, v′′, u′ and u′′. So we add the edges
(v′, u′), (v′, u′′), (v′′, u′) and (v′′, u′′) to the new graph, completing the clique between the
nodes. For each edge (u, v) that is in E1 but not in E2

s , we can select u′ and v′ together,
but not u′ and v′′, v′ and u′′ or v′′ and u′′. We add the edges (u′, v′′), (v′, u′′) and (v′′, u′′)
to the graph, still allowing both u′ and v′ in the independent set.

4.3. A Minimax Example: Demand Robust Shortest Path

Let us consider the shortest path problem: given a graph G = (V,E) and weights w(u,v)

on the edges (u, v) ∈ E, given a source node a ∈ V and a sink node b ∈ V , what is the
shortest path from a to b. We will extend this problem to the demand robust shortest
path problem, after we introduce a predicate pathset(a, b,X).

Definition The predicate pathset(a, b,X) with a ∈ V, b ∈ V and X ⊆ E is true if and
only if the set X contains a path from a to b.

Now let us introduce binary variables x(u,v) for each edge (u, v) ∈ E. By using set
builder notation, we can easily describe a relation between these variables and a set
of edges: the expression {(u, v) ∈ E : x(u,v) = 1} contains all edges for which the
corresponding binary variable is set to 1. Now let us introduce a more formal definition
of the shortest path problem.

LSPP = min
∑

(u,v)∈E

w(u,v)x(u,v)

s.t. pathset(a, b, {(u, v) ∈ E|x(u,v) = 1})

Now let us extend this to the demand robust shortest path problem, as described by
[DGRS05]. In this extension of the shortest path problem, there are multiple scenarios
s ∈ S that each define a separate sink bs and a factor fs. Now we can buy each edge
(u, v) initially for w(u,v) or when we recover for a scenario s for fsw(u,v). Now we want
to minimize the maximum total costs Let us introduce binary variables ys(u,v) for each

scenario s ∈ S and each edge (u, v) ∈ E. Let us consider the formal description:
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DRSPP = min
∑

(u,v)∈E

w(u,v)x(u,v) + zmax

s.t.
∑

(u,v)∈E

fsw(u,v)y
s
(u,v) ≤ zmax ∀s ∈ S

pathset(a, bs, {(u, v) ∈ E|x(u,v) = 1 ∨ ys(u,v) = 1}) ∀s ∈ S

In this case, the RVDs are quite trivial: fixing a variable to 1 can yield two results:
if it is not in the optimal solution, the edges that are will be selected in addition to
the variable. If it is in the optimal solution, nothing changes. Fixing a variable to 0
yields the same result as removing it from the graph. Feasibility can be checking by
looking at the connectivity of the graph between a and each bs - if a and a single bs are
unconnected, the problem has become infeasible. The linear adjustable objectives are
also rather trivial, since we can simply adjust the weights of each variable.

However, linear recovery constraints are a problem in this case. While it may be possible
to express the pathset predicate using linear constraints, it is not a very elegant way to
look at the problem. This implies we will use the combined recovery decomposition, since
it does not require the linear recovery constraints. When we apply this decomposition,
we will consider χsk as a solution vector to a binary variable y′sk as a set of edges, for the
sake of simplicity.

LCMP-DRSPP = min
∑

(u,v)∈E

w(u,v)x(u,v) +zmax

s.t.
∑
k

y′sk c
Y s

k ≤ zmax ∀s ∈ S duals: πzs∑
k

y′sk = 1 ∀s ∈ S duals: πs∑
k

[(u, v) ∈ χsk]y′sk = x(u,v) ∀(u, v) ∈ E,∀s ∈ S duals: πs(u,v)

Now, the corresponding pricing problem for a given scenario s ∈ S has the following
form.

CPP-DRSPPs = min −
∑

(u,v)∈E

πs(u,v)x(u,v) − πzs
∑

(u,v)∈E

w(u,v)fsy
s
(u,v)

s.t. pathset(a, bs, {(u, v) ∈ E|x(u,v) = 1 ∨ y(u,v) = 1})

While the pricing problem is close to the shortest path problem we presented originally,
we have two binary decisions variables for each edge (u, v) ∈ E. However, we can fix this
using some preprocessing and certain observations about the pricing problem:

• We will always select a variable that has negative total cost. We can consider the
costs of these variables as 0 while solving the shortest path problem, as long as we
fix them to 1 and take their costs into consideration after we found a path.
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• Now all variables have non-negative costs. Since selecting the x(u,v) or ys(u,v) variable

of a certain edge (u, v) ∈ E will only give us an advantage if they actually are on
the path we are looking for and since we only need one of the two, we will always
take the cheapest. The other variable can be removed from the problem, because it
will never be selected.

After we apply these observations during a preprocessing phase, we have a single
variable for each edge and all these variables have non-negative costs. The resulting
problem is a single shortest path problem and since we have no negative cost edges, they
can be solved by using Dijkstra’s Shortest Path algorithm [Dij59].

4.4. Recoverable Robust Network Flow

The work in this section is the result of joint work with Thomas van Dijk, with the idea
to apply this approach to the Integer Maximum Flow in Wireless Sensor Networks with
Energy Constraint [BTvDvL08].

The Maximum Flow Problem is a classic problem in Combinatorial Optimization and
Operations Research, of which the history is discussed in [Sch02]. Methods to solve
Maximum Flows problems are discussed in many textbooks on algorithms, including
[CSRL01]. The Maximum Flow Problem is concerned with finding a maximum flow in
a graph G = (V,E). Give a source i ∈ V , a sink j ∈ V and a capacity for each edge
cuv∀(u, v) ∈ E. If we introduce a variable fuv for each edge (u, v) ∈ E, we can write this
problem as the following linear program:

MFP = max
∑

(i,v)∈Ei

fiv

s.t. fuv ≤ cuv ∀(u, v) ∈ E∑
(u,v)∈Ev

fuv −
∑

(v,w)∈Ev

fvw = 0 ∀v ∈ V, v 6= i, v 6= j

We may note that this linear program has a totally unimodular constraint matrix, which
implies that the optimal solution to this linear program will be integer if the capacities
of the edges are integer. For more information on linear programming and totally
unimodular matrices we refer to [BJS04]. Now we extend this MFP to a Recoverable
Robust Maximum Flow Problem with Recovery by Removal. We assume that the
capacities of the edges may become lower in each scenario s ∈ S and we may only remove
flow from the network to adhere to the new capacities. If we formulate this problem
using linear programming, we get
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RRMFP-R = max p0

∑
(i,v)∈Ei

fiv +
∑
s∈S

ps
∑

(i,v)∈Ei

fsiv

s.t. fuv ≤ cuv ∀(u, v) ∈ E∑
(u,v)∈E

fuv −
∑

(v,w)∈E

fvw = 0 ∀v ∈ V, v 6= i, v 6= j

fsuv ≤ csuv ∀s ∈ S,∀(u, v) ∈ E∑
(u,v)∈E

fsuv −
∑

(v,w)∈E

fsvw = 0 ∀s ∈ S,∀v ∈ V, v 6= i, v 6= j

fuv − fsuv ≥ 0 ∀s ∈ S,∀(u, v) ∈ E

Let us apply the Separate Recovery Decomposition to this problem. We introduce
F as the set of possible flows, with k an index on these flows. We also introduce an
indicator guvk that gives the flow over edge (u, v) in the flow with index k from the set F .
Using the scheme of the LSMP from Section 3.4.1, we get the following master problem:

RRMFP−R
LSMP = max

∑
k∈F

p0ckxk +
∑
s∈S

ps
∑
k∈F

cky
s
k

s.t
∑
k∈F

xk = 1 dual: π0∑
k∈F

ysk = 1 ∀s ∈ S duals: πs∑
k∈F

guvk xk −
∑
k∈F

guvk y
s
k ≥ 0 ∀s ∈ S, ∀(u, v) ∈ E duals: πuvs

This master problem leaves us with the basic scenario duals and a dual value for
each edge for each scenario. When we derive the pricing problems in the same way as
in Section 3.4.1, we get the following Separate Initial and Separate Recovery Pricing
Problems.

RRMFP−R
SIPP = max p0

∑
(i,v)∈Ei

fiv −
∑

(u,v)∈E

∑
s∈S

πuvs fuv − π0

s.t. fuv ≤ cuv ∀(u, v) ∈ E∑
(u,v)∈Ev

fuv −
∑

(v,w)∈Ev

fvw = 0 ∀v ∈ V, v 6= i, v 6= j

RRMFP−R
SRPP s = max ps

∑
(i,v)∈Ei

fsiv +
∑

(u,v)∈E

πuvs f
s
uv − πs

s.t fsuv ≤ csuv ∀(u, v) ∈ E∑
(u,v)∈Ev

fsuv −
∑

(v,w)∈Ev

fsvw = 0 ∀v ∈ V, v 6= i, v 6= j
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We must observe that the objective of these pricing problems has changed with respect
to the MFP. While the MFP is concerned with finding a maximum flow, this objective
becomes distorted in the pricing problem. However, we may observe that the constraints
of these pricing problems follow the exact same structure as the MFP. Therefore, these
pricing problems have a totally unimodular constraint matrix as well and will yield
integer solution when we use a linear programming solver. In addition to that, these
pricing problems may be solved with algorithms for the Min-Cost Flow problem, such as
presented by [Coo98] or [AMO93].
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5. Recoverable Robustness and the Knapsack Problem

5.1. Introduction to Knapsack Problems

In the introduction to robustness in Section 1.1 we discussed the repair factory example
and showed that it could be modeled as a knapsack problem in Section 4.1.1. We will
now take a look at the Knapsack problem and its variants extended with robustness. The
basic knapsack Problem (KP), sometimes called the 0-1 Knapsack Problem, is concerned
with a set of items I with weights ai and profits ci and a single capacity b. The problem
states that we should find a subset of I in such a fashion that we maximize our profit
(the sum of the ci’s in the subset), while the weights don’t exceed the capacity. The
problem is often used as a simple example of an Integer Linear Program.

max
∑
i∈I

cixi

s.t.
∑
i∈I

aixi ≤ b

xi ∈ {0, 1} ∀i ∈ I

The binary variables xi represent the choice to take an item in the subset or not. Many
variants of the knapsack problem exist. An example is the bounded knapsack problem,
that puts a certain limit on the amount of times an item can be taken (in an integer linear
programming perspective this would change the variable constraint to xi ∈ {0 . . . ni}
with ni the number of copies for item i). Another example is the unbounded knapsack
problem, where we may take an unlimited amount of each item (again, from an integer
linear programming perspective this would change the variable constraint to xi ∈ N).
We can examine the regular Knapsack Problem without loss of generality, since we can
express these variants by adding each item multiple times to that problem.

Of course, there are many cases where the problem has a trivial solution. If we have a
problem instance where we can choose all available items without exceeding the capacity,
it is clear this solution is optimal. Any item with negative profit can be ignored, since it
will only make a solution worse and we have no obligation to choose it. If we have an
item that has a weight ai that is larger than the maximum capacity b, we will never be
able to choose it, so it can be ignored.

A special case of the Knapsack Problem is the variant where the profit of an item
is equal to its weight, i.e. ∀i ∈ I : ai = ci. This variant is called the Subset Sum
problem (or SSP). This variant has historic significance since it was one of Karp’s 21
NP-complete problems as presented in [Kar72] and thus one of the first problems shown
to be NP-complete. While Karp called it the Knapsack Problem, it is nowadays more
common to refer to it as the Subset Sum problem, since his formulation was “INPUT:
(a1, a2, . . . , ar, b) ∈ Zn+1, PROPERTY:

∑
ajxj = b has a 0 − 1 solution”. It is also

relevant in practice where certain partitioning problems arise, for example when we want
to schedule jobs over two machines in such a fashion that the time difference between
the start and finish of the execution is minimized.
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Another variant of the Knapsack Problem is the Cardinality Constrained Knapsack
Problem (or kKP), which is discussed in [CKPP98]. The kKP has an additional constraint,
stating that the maximum number of items in the solution may not exceed a certain value
k (which corresponds to adding

∑
i∈I xi ≤ k as a constraint to the ILP-formulation).

Small variations of this constraint also exist, like the exact k-item knapsack problem (or
E-kKP), which states that the solution should have exactly k items (or

∑
i∈I xi = k).

Another variant is the Precedence Constrained Knapsack Problem (or PCKP), which
is discussed by [JN83]. It allows us to define precedence constraints on the items. A
precedence constraint states that we may only choose a certain item, if its predecessors
are also chosen. The graph that expresses these constraints is called the precedence
graph. If we have an arc (i, j) in the arc set E of the precedence graph, we must choose i
before choosing j (this corresponds to having an additional constraint xi ≥ xj∀(i, j) ∈ E
in the linear programming formulation). Other variants are discussed in the textbook
about Knapsack Problems [KPP04].

While, the exact Subset Sum problem is NP-complete (and the Knapsack problem is
NP-hard), it is perhaps the easiest NP-complete problem and there are algorithms that
can solve many practical cases quite efficiently. There is a straightforward application of
Dynamic Programming for the SSP which can solve a problem in O(nb) time (Section
5.3.1), where n is the amount of items and b the capacity. Since b is a single parameter in
the input of the problem, we may only consider a O(nb) time algorithm to be polynomial
if we consider the input to be in unary encoding. If we consider the input in binary
encoding, the algorithm doesn’t run in polynomial time with respect to the input size.
Something similar holds for the cardinality constrained knapsack problem, which has a
relatively efficient algorithm from [CKPP98] which takes O(nkb) time if the cardinality
of the knapsack is constrained by k. An algorithm that runs in polynomial time in case
of unary encoding, but in exponential time in case of a binary encoding, is called a
pseudo-polynomial time algorithm.

However, not all NP-complete problems have pseudo-polynomial algorithms. The
problems that do are called weakly NP-hard, while the problems that don’t are called
strongly NP-hard. The notion of pseudo polynomial time algorithms and NP-hardness
in the weak or strong sense was introduced by [JN83]. An example of a strongly NP-
hard problem is the Knapsack Problem with Precedence Constraint on arbitrary graphs.
However, if we know the structure of the graph to be a tree, the problem becomes weakly
NP-hard, since there is known to be an algorithm that solves this problem in O(nU) time,
where U is an upper-bound on the value of the solution (and a very poor upper-bound
can be calculated by taking

∑
i∈I ci, which yields a pseudo-polynomial time algorithm).

5.2. Dynamic Programming for KP and related problems

5.2.1. Dynamic Programming for KP

The easiest Dynamic Program to solve the basic Knapsack Problem is the classic Bellman
Recurrence [Bel57]. Our state variable A(i, w) reflects this recurrence. The value of
A(i, w) is the best possible profit for a knapsack with weight exactly w containing a
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subset of items with indices j such that j ≤ i.

A(i, 0) = 0
A(0, w) = −∞ for w 6= 0

A(i, w) = max

{
A(i− 1, w)
A(i− 1, w − ai) + ci

The first line of the recurrence states that the value of a knapsack with size 0 has
value 0 - this is the empty knapsack. We assume the indices on the items start at 1, so if
i = 0, we don’t consider any items. Now if we don’t consider any items, the only possible
knapsack is the empty knapsack, which has size 0. It is impossible to create any other
knapsack, so we give such a knapsack the value −∞. Now if we may consider a new item
i, we have two options for each fixed size w: we can either take the best solution so far
for the size w (ignoring the new item) or we can add it to the best possible knapsack of
size w − ai.

Since the optimality of A(i, w) only depends on A(i− 1, w) and A(i− 1, w − ai), the
problem of finding the optimal A(i, w) is divided into two smaller sub-problems. This
implies the correctness of the recurrence, but a more detailed proof can be found in
Appendix C.1.

If we use memorization we can create a table for all entries of A(i, w), which has |I|b
entries. Since each entry can be calculated in constant time if its two dependencies have
been calculated, the algorithm runs in O(|I|b) time. We can use the principle that we
only need the column A(i − 1, w) to calculate the column A(i, w); which implies that
we only need to store the previous and current column, reducing our memory costs to
O(b). Clearly, this approach only gives the value of the solution, but not the solution
itself. If we keep all values of A(i, w) in memory, we can backtrack trough the table by
determining whether A(i, w) = A(i− 1, w) or A(i, w) = A(i− 1, w − ai)− ci. In the first
case, we ignore item i, in the second case we know we must add item i− 1 to our solution.
We can then backtrack further from either A(i− 1, w) or A(i− 1, w − ai), depending on
whether i was ignored or added.

Another approach is to keep track of the items added during the construction of each
column: we store the current item-set for each cell in the current column in memory. Of
course, this approach uses O(|I|b) memory, just like keeping the entire table in memory.
However, when we work with linked lists, it is very probable that we don’t use all memory,
since not all values for A(i, w) will use all items.

5.2.2. Balanced Dynamic Programming for SSP

As introduced in [Pis99], we can make the observation that in case of the SSP (and also
in case of the KP), if the sum of the sizes of all items is greater than the capacity b,
the size of the feasible solution with total size closest to b must lie somewhere between
b− amax and b, with amax the greatest size of a single item. Clearly, if the solution would
have a greater size, it is infeasible. On the other hand, if it is smaller, we can add an
item without becoming infeasible, thus improving the value of the solution.
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There are advanced techniques for the SSP and KP that use this principle. Let us
consider the split solution to a KP or SSP.

Split Solution for KP Let us order the items in our item-set I by descending ratios,
such that ci

ai
≥ ci+1

ai+1
. Let us define the split item as the item with index ĵ, such that

ĵ−1∑
i=1

ai ≤ b and

ĵ∑
i=1

ai > b

In other words, when we add items with increasing indices to our knapsack, item ĵ is the
first item that causes an overflow in the capacity b. Now we define the split solution x̂ as
x̂ = {1, 2, . . . , ĵ − 1}.

Let us start with the split solution x̂ with size ŵ and ĵ the index of the split item.
The split solution contains all items with indices i < ĵ. We will discuss a technique that
derives infeasible and feasible states from the x̂ state, such that these states have total size
in the range b−amax, . . . , b+amax. If such a state has a size in the range {b−amax, . . . , b},
we may add an item to it. If it has a size in the range {b + 1, . . . , b + amax}, we must
remove an item from it.

Now let us define a state variable (k, i, w) with k an index in the range ĵ, . . . , |I| which
represents the last item considered for addition, w a size in the range b−amax, . . . , b+amax

which represents the size of the current solution and i an index in the range 1, . . . , ĵ − 1
which represents the highest index that has not been considered for removal from the
current solution. We require that only items that were originally in x̂ can be removed,
by stating that i should be in the range 1, . . . , ĵ − 1. Additionally, we will require that
after we remove an item i with from a certain state, no items with an index i′ such that
i′ > i may be removed from that state for a larger k. So, for example, if ĵ = 6 and we
need to remove items 2 and 4 from our split solution, we must first remove item 4 from
the corresponding state before removing item 2, since our requirement states that we
may not remove item 4 after we have removed item 2.

Not let us consider two states (k1, i1, w1) and (k2, i2, w2) such that w1 = w2, k1 = k2

and i1 > i2. Since we consider the SSP and both solutions have the same size, we are
only concerned with the states that can be derived from them. Since i1 > i2, we have
considered less items for removal in state 1, which implies that we have more freedom to
remove items from state 1 than from state 2. Clearly, a state where we remove item i1
and get a new state with total size w1 − ai1 cannot be derived from state 2, since item i1
has either been removed from that state already, or an item with a lower index has been
removed which implies that we may not remove item i1 any more. This means that state
1 dominates state 2 and we only have to memorize state 1 in this case.

Now for each possible index k, we will create a table that holds a state for each value
of w such that b− amax ≤ w ≤ b+ amax. From such a table for index k, we will construct
the table for index k + 1. First, we copy all states in the table for index k to the table
for k + 1, modifying index k in each state to k + 1. This is acceptable, since this copying
operation represents the situation where we don’t use item k + 1 in our solution. After
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Figure 4: Example of constructing a table k + 1 from table k

the copying operation, we will perform two scanning phases through the table: one phase
where we will add item k + 1 to states that have w ≤ b and a second phase where we
remove items from states that have w > b. If we have a state with w = b, we are done
(since no SSP solution will be better than an item-set with total weight b).

The copy operation presented above is very straightforward. After we have copied all
old states, we will consider the states (k, i, w) with w = b − amax + 1, . . . , b and add a
state (k + 1, i, w + ak+1) for each w to the table for k + 1, if the generated states are not
dominated by the current state in the table for k + 1. If the new state is dominated,
we just retain the old state in the table. Both the copy and addition operations are
illustrated in Figure 4.

After we have added our items, we will consider the infeasible states. We will now
consider the states (k + 1, i, w) with w from b+ amax down to b+ 1. If the table for k
contains a state (k, i′, w), we will consider each index j such that i′ < j ≤ i as a potential
item for removal and generate states (k + 1, j, w − aj), which implies that we try to
remove each item that hasn’t been removed from a state with size w before. Now if there
is no state in the table for k, we apply the same process, but consider i′ to be 0. In
both cases, we put the generated states in the table for k + 1, if they are not dominated
by a state already present. The removal of items from a single infeasible state is also
demonstrated in Figure 4.

This algorithm will find a solution for a certain size w > b − amax if it exists, since
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for each such w a solution can be derived from x̂ by adding and removing items in the
correct order. The exact argument is presented in Section C.2.

Now when we want to calculate the table for k = |I| by calculating all previous tables,
a simple observation tells us that, since there are at most O(|I|) possible values and
we need at most O(amax|I|) time to calculate a table, we need O(amax|I|2) to calculate
the table for k = |I|. However, this analysis is not tight. While it is true that we may
perform O(|I|) steps when removing items from a single state with size w′ > b, all future
operations on states of this size w′, it is not necessary to consider the removal of items
that have been considered for removal before. If item i′ was remove previously from our
current state, the state at w′ − ai′ will have an i at least i′ − 1. Therefore, we only have
to remove items with indices > i′ from our current state, since the removal of items with
indices ≤ i′ will result in states that are dominated anyway. So, over the course where k
takes on all values from ĵ to |I|, the total number of removals from states with size w′

is bounded by |I|. Now when we separately analyze the number of states examined for
all values w′ > b and the number of item removals performed for states w′ > b, we can
see that there are O(amax|I|) states and O(amax|I|) removals. Since all additions could
be done in constant time and we examine O(amax|I|) states with w ≤ b, the true time
bound for this algorithm is O(amax|I|).

The full process of constructing the table for k + 1 from a table k is presented in
Algorithm 3. When we take a look at the algorithm, we see a single for loop over w′ for
the copy operations, then a single for loop over w′ for the add operations and finally a
double nested for loop over w′ and j. Since the body of the first two for loops is constant,
copying and addition take O(amax) time. When we consider removals, the worst case
gives us a situation where we must remove all items for each value of w′, so the removals
may take up O(amax|I|) time. Thus, calculating a single table takes O(amax|I|) time.

This approach can be extended to knapsack problems, by taking the current profit
of a solution into account. By using a gap Γ between a upper and lower bound on the
solution value, the algorithm can solve Knapsack problem in O(|I|amaxΓ) time. The
exact way to do this is presented in the work by Pisinger [Pis99].

5.2.3. Dynamic Programming for PCKP with Trees

Now consider the Precedence Constrained Knapsack Problem where the precedence graph
has a tree structure. We will assume this tree structure to be an out-tree (i.e. the root
has no precedence constraint, all children of the root can be added after the root is added,
etc.). We will see this structure when we discuss the Surrogate Relaxation in Section
5.4.5, but the algorithm can also be adapted to a variant for an in-tree. For more detailed
information on these algorithms, see [JN83].

Let us number the tree by performing a depth first preorder traversal. This implies
we number a node when we visit it. We first visit the root of the tree, which will get
number 1. We then visit the subtree induced by the first child of the root, so all nodes
under the first child are numbered. Then we visit the subtree induced by the second
child of the root, etc. Since each node in the tree represents an item, we have |I| nodes.
Let us introduce the function s(i) that gives the number of children node i has (i.e. if i
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Algorithm 3 Calculate table k + 1 from table k

Input: Table A
Output: Table B
Initialize Table B
for w′ ← b− amax to b+ amax do
B[w′]← A[w′]

end for
for w′ ← b− amax to b do

if A[w′] contains an entry then
(k′, i′, w′)← A[w′]
(k + 1, i, w′ + ak+1)← B[w′ + ak+1]
if i′ > i then
B[w′ + ak+1]← (k + 1, i′, w′ + ak+1)

end if
end if

end for
for w′ ← b+ amax to b+ 1 do

if B[w′] contains an entry then
if A[w′] contains an entry then

(k, i′, w′)← A[w′]
else
i′ ← 0

end if
(k + 1, i, w′)← B[w′]
if i′ < i then

for j ← i to i′ + 1 do
(k + 1, i′′, w′ − aj)← B[w′ − aj ]
if i′′ < j then
B[w′ − aj ]← (k + 1, j, w′ − aj)

end if
end for

end if
end if

end for
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has three children, s(i) = 3).
During our traversal of the tree, a state table is stored in each node on the path from

the current node to the root. A state (c′, u′) implies that the minimum size for a knapsack
with at least profit c′ is u′. The notation v(c′) = u′ implies we have a state (c′, u′) stored
in the table of a node v. If we traverse an arc (v, w) in the tree, we will apply a rule to
update the table in one of the nodes: if we traverse the arc from v to w we apply the
descend rule, while we apply the ascend rule if we traverse the arc from w to v. After
we have traversed the entire tree and are back in the root, the root node contains the
table with the best values for the complete tree. The rules are derived from the original
Dynamic Programming recurrence in the work of [JN83].

Root rule ∀c′ : v(c′)←

{
av if cv ≥ c′

∞ otherwise

Descend rule ∀c′ : w(c′)← v(max{0, c′ − cw}) + aw

Ascend rule ∀c′ : v(c′)← min{v(c′), w(c′)}

The Root rule is easy to understand: we must add the root node to the tree (otherwise
we have an empty knapsack). The Descent rule is a generalization of this principle: if
we descend the tree, we must add the node to our solution (otherwise we can’t add
it’s children). The Backtrack rule implies choice: when we ascend to a node that has
multiple children, it can choose between the paths of these children. Before ascending an
arc (v, w), node v contains the table for all children of v up to w and node w contains
the table with all children with w a mandatory node. The ascend rule states that we
from the point of view of node v, we must only consider w mandatory if it improves our
solution.

Now let us consider the running time of the algorithm. Suppose we have some upper-
bound U on the value of the solution. We can limit the size of our tables to U . During
the depth first preorder traversal, each node will be reached once by descending to it,
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and once the results of the entire subtree of that node and its successors are calculated,
a single ascend operation to its parent will be performed. This means each node except
the root will perform exactly two operations, that both take O(U) time to calculate.
Since each node takes 2U time to calculate, except for the root, the running time of the
algorithm will be O(2U(|I| − 1)) = O(U |I|). Since the algorithm needs to store a table
in memory for each node in the current path of the traversal, we can use a bound on the
path length (i.e. the depth of the tree) d for the bound on the memory: O(dU) when we
are considering a decision variant of the problem.

The algorithm can be transformed to an algorithm with tables v(a′) = c′, which gives
a running time of O(b|I|) and a memory use of O(d|I|).

5.2.4. Dynamic Programming for kKP

Now consider the kKP, the variant of Knapsack where we must find a knapsack of at
most k items. This problem is very close to the original Knapsack problem. For the
original problem, our main concern was the capacity of the solution. This remains a
concern, but the cardinality of the solution is a new concern. Still, the principle of the
optimal substructure that was used to construct a Dynamic Programming algorithm
for the KP can be extended to take the cardinality of the solutions into account. This
can be achieved by adding the cardinality as a parameter to the Dynamic Programming
recurrence, as shown by [CKPP98]. Now when we add an item to a previous solution,
the cardinality of that solution is increased by one (and the total size is increased by
the size of the item). We will define a recurrence B(i, k′, w), which gives the profit of
the best possible knapsack that contains a subset of items that have indices j such that
j ≤ i, contains exactly k′ items and has exact weight w.

B(i, 0, 0) = 0
B(i, 0, w) = −∞ w 6= 0
B(i, k′, 0) = −∞ k′ 6= 0

B(i, k′, w) = max

{
B(i− 1, k′, w)
B(i− 1, k′ − 1, w − ai) + ci

The table can be calculated in the same fashion as the Dynamic Program from section
5.2.1, but it has k as an extra dimension to the table. This yields a running time of
O(|I|bk) time and O(bk) space. Of course it is also possible to extend the Balanced
Dynamic Programming recurrence from section 5.2.2, to obtain a faster algorithm.

5.3. Dynamic Programming for Size Robust Knapsack Problems

5.3.1. Robustness and the Knapsack Problem

Now that we have discussed the basic Knapsack Problem, we can discuss some robustness
variants for the problem. While robustness problems with scenarios in which the weights
of the items differ for each scenario or jobs take more or less time than expected have been
discussed by [BKK11], we will concentrate on scenarios where our capacity constraint
differs. We introduce the scenario set S with a capacity bs for each scenario s ∈ S. Since
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we may want to consider expected cost objectives, we will also define a probability ps for
each scenario in such a way that our probabilities sum up to 1.

In this process, we will consider the initial and recovery solution separately. While
both solutions consist some item-set, we want an initial item-set and a separate recovery
item-set for each scenario. The item-set for each scenario should be recovered from the
initial set, by some means of recovery. The capacity for the initial knapsack has a special
symbol, b0. We also reserve the index 0 for the initial “scenario”, which can also be seen
as a special case of a recovery scenario that doesn’t need any recovery from a feasible
initial solution.

Now that we have our scenarios, we will discuss different ways of recovery. We will
assume that b0 is equal to or larger than all scenario capacities. Our initial solution may
not exceed the capacity b0. We will consider means of recovery where we are allowed to
remove items, or means of recovery where we are allowed to swap items for other items.
First we will consider a simple recovery procedure where recovery is done in a greedy
way, according to a given order, like value or weight. This implies that recovery is done
by removing the cheapest item first, or the largest item first, until the solution becomes
feasible. Such an extension of the problem is called the Size Robust Knapsack Problem
with Greedy Recovery (by cheapest item, or by largest item, by lowest ratio, etc). Since
we are allowed to remove all items that are currently in the knapsack, a solution to such
a problem will always be feasible (since a solution without items will never violate the
capacity constraint). Such a recovery scheme isn’t interesting with respect to the strict
interpretation of recoverable robustness, since the feasibility is trivial. However, it can
be interesting to find a solution that has good expected profits.

If we limit the number of items we are allowed to throw away, feasibility becomes an
issue. It is possible that putting too many items in our knapsack will make it impossible
to throw enough items away to make our knapsack feasible. If we are only interested in
finding a feasible solution (and thus look at the problem from a Recoverable Robustness
perspective), we only need to consider our main capacity b0 and the lowest capacity for
all values of bs. If we can recover to the lowest value of bs, we also know that we can
recover to larger capacities, because the recovery for the lowest value is also feasible for all
larger values. If we place a limit on the number of items that we can throw away during
recovery, we call this cardinality constrained recovery. It is also possible to combine this
recovery method with an objective - the expected costs are a likely candidate.

Now suppose we are not allowed to throw any item away, but we may swap them for
other items. This gives us another recovery procedure. Feasibility becomes an issue,
because in an instance where we select all items, we cannot recover at all, since we can’t
swap any items. Of course, the number of swaps can be constrained, making feasibility
an even greater issue. When we recover using swaps, we call the problem the Size Robust
Knapsack Problem with Recovery by Swapping. Like with the cardinality constrained
recovery, we can look at these problems from a Recoverable Robustness perspective, since
feasibility is not trivial. When we do this we also can limit ourselves to only the main
capacity b0 and the minimal capacity for all bs values, using the same argument again.
Of course, it is also possible to consider this problem with an objective function - again
the expected costs are a likely choice for an objective function.
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The most basic form of recovery, is recovery where we can throw away items, but have
no limitations on what items to throw away and even have no predefined method to do
this. In such a case, finding the best way to remove items from a certain item-set is a
Knapsack Problem in itself - we need to choose a set of items from the main item-set in
such a fashion that we retain the highest possible profit, but do not exceed our capacity of
the scenario. Since feasibility is trivial in this case, this problem is more on the two-phase
stochastic programming side of the spectrum.

Since we introduced a lot of concepts for recovery, we will give a short summary of
the terminology. We will also present abbreviations that can be used to express all
variants of the Size Robust Knapsack Problem (in short: RKP) and the Robust Subset
Sum Problem (in short: RSSP). When we describe a problem, we will use the scheme:

“objective”-problem-“recovery constraint”.

Objectives

Feasibility Objective (F-) We are only concerned with finding an initial solution
with maximum profit that can be made feasible for each scenario. This implies
we view the problem from a Recoverable Robustness perspective.

Worst Case Objective (W-) We are concerned with finding an initial solution such
that the lowest maximum profit for a single scenario is maximized. In other
words, we want to perform as good as possible in the worst case.

Expected Profit If no prefix is given, we want to maximize the expected profit.
The expected profit is given by the sum of the profits for each scenario times
the probability of the scenario.

Recovery Constraints

Recovery by Removal (-R) We are only allowed to throw away items from our
initial solution.

Recovery by Swapping (-S) We are only allowed to swap items that we used in
the initial solution for items that were not used in the initial solution to create
solutions for the scenarios.

Cardinality Constrained Recovery (-C) We have a limited number k of recovery
steps that we may do to derive a feasible solution for our scenario from the
initial solution.

Greedy Recovery (-G) We have some rule on the order in which we should throw
our items away. Likely candidates are largest weight (-Gamax), smallest profit
(-Gcmin) or smallest ratio (-G( ca)min), but other rules are possible.

When we create an abbreviation for a certain type of Size Robust Knapsack Problem,
the objective type is a prefix for RKP, while the recovery types are postfixes for the RKP.
For example, the Feasibility Size Robust Knapsack Problem with Cardinality Constrained
Recovery by Swapping is abbreviated to F-RKP-SC, while the Size Robust Knapsack
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Problem with Greedy Recovery by Removal on the Smallest Ratio is abbreviated to
RKP-RG( ca)min.

5.3.2. Dynamic Programming for F-KP-RC

Let us consider the Feasibility Knapsack Problem with Cardinality Constrained Recovery
by Removal. A simple idea to solve the problem is to consider the items ordered from
small to large. In this way, we know that we cannot add more than k − 1 items to a
possible solution from the moment the summed weight of the item-set becomes larger
than bmin. We will use this principle to show that the F-KP-RC is as least as hard as the
kKP problem, since the kKP problem is a special case of the F −KP −RC.

We will now consider a couple recoverable robustness knapsack problems and present
some techniques to solve them.

Theorem 5.1. The kKP is a special case of F-KP-RC.

Proof. Suppose we have an instance of kKP with capacity b and the cardinality of the
knapsack constrained to be at most k. Let us create an instance of the F-KP-RC problem,
with bmax = b and bmin = 0, and a cardinality constraint on the recovery of k. The
optimal solution to this F-KP-RC problem can contain at most k items, since recovery
to the empty set should be possible by throwing away at most k items. If the solution
contains more than k items, recovery is not feasible.

While the F-KP-RC is a generalization of the kKP, we can adapt the algorithm
presented in Section 5.2.4 to make it work for the F-KP-RC. While the algorithm for
kKP makes no assumption about the order of the items, we will assume items are ordered
according to their sizes, such that the last item always has greatest size. This way, we
can easily find our maximum recoverable size: we just remove the last k items. If we
combine this idea with the observation that after we exceed capacity bmin, we can only
add k − 1 additional items to our solution. Let us redefine the meaning of k′ in the state
(i, k′, w) of the Dynamic Program for the kKP in such a fashion that it represents the
amount of items that make our capacity exceed bmin. Since the order implies that by
doing this, we only count the largest items in the solution under consideration, it is not
very difficult to see that this yields a correct algorithm.

Modifying the algorithm, i still represents the item under consideration for addition
and w represents the size of the current solution in the state (i, k′, w).

C(i, 0, 0) = 0
C(i, 0, w) = −∞ for w > 0
C(i, k′, 0) = −∞ for k′ > 0

C(i, k′, w) = max

{
C(i− 1, k′, w − ai) + ci
C(i− 1, k′, w)

if w ≤ bmin

C(i, k′, w) = max

{
C(i− 1, k′ − 1, w − ai) + ci
C(i− 1, k′, w)

if w > bmin
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5.3.3. Dynamic Programming for RKP-S

When we consider recovery with swapping without a limit on the number of swaps, the
problem can be solved by Dynamic Programming. The idea is that when the allowed
number of swaps is at least d |I|2 e, we can recover from one set of items to another set of
items as long as the two sets have the same cardinality, since they can be transformed
into each other by swapping an item that is not in the target set for an item that is. Using
this knowledge we can use the Dynamic Programming recurrence B for the kKP from
Section 5.2.4. Let us recall B(i, k, w), which gives the value of the best possible knapsack
with size w, cardinality k, containing items with indices up to i. We use Algorithm 4 to
find a solution to RKP-S.

D(i, 0, 0) = 0
D(i, 0, w) = −∞ w 6= 0
D(i, k′, 0) = −∞ k′ 6= 0

D(i, k′, w) = max

{
D(i− 1, k′, w)
D(i− 1, k′ − 1, w − ai) + ci

Algorithm 4 Dynamic Programming Algorithm for RKP-S

Calculate table D(|I|, k, w)
Initialize c∗ ← 0
for 1 ≤ k ≤ |I| do

Initialize ck ← 0
for s ∈ S do
cs ← ps max

0≤w≤bs
C(|I|, k, w)

ck ← ck + cs
end for
c∗ ← max{c∗, ck}

end for
return c∗

To prove the correctness of Algorithm 4, we prove a theorem that shows the relation
between swapping operations and the cardinality of item-sets.

Theorem 5.2. Consider an item-set I and two item-sets I ′ ⊆ I and I ′′ ⊆ I. If we are
only allowed to use swap operations, I ′ can only be transformed into I ′′ if and only if the
cardinality of I ′ is equal to the cardinality of I ′′ (i.e. |I ′| = |I ′′|).

Proof. If |I ′| = |I ′′| we can transform I ′ into I ′′ by using the following procedure

while I ′ 6= I ′′ do
Choose i1 such that i1 ∈ I ′, i1 6∈ I ′′
Choose i2 such that i2 6∈ I ′, i2 ∈ I ′′
I ′ ← swap i1 for i2 in I ′
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end while

If |I ′| 6= |I ′′| we can never transform I ′ into I ′′, since the cardinality of I ′ will not
change when we use a swap operation. Since two identical item-sets have the same
cardinality, I ′ will never become I ′′ by swapping only.

Since recurrence D finds the best solutions for each cardinality and the proof implies
that swapping restricts recoverability to item-sets of the same cardinality, we have shown
that Algorithm 4 finds an optimal solution. Now let us consider the running time of
Algorithm 4. Calculating the full table D(|I|, k, w) takes O(|I|2b) time. In the algorithm
itself, the outer loop takes O(|I|) time, the inner loop takes O(|S|) time and the max
over 0 ≤ w ≤ bs takes O(b) time, assuming the values of C are already calculated. This
gives a total running time of O(|I|2b+ |I||S|b).

5.3.4. Dynamic Programming for RKP-RG

When we consider these greedy recovery methods, we can solve these problems with the
general Dynamic Programming approach we used for the normal KP, if we sort the items
according to the inverted ordering of our greedy recovery. If our greedy recovery states
we should recover by removing the smallest item first, we should add the greater item
i before j if ai > aj . In general, for any two items i and j in our knapsack such that i
was added before j, item j will be removed before item i will be removed by our greedy
recovery algorithm. This has the advantage that in any case where we consider to add
an item in our Dynamic Programming algorithm, we know that the new item will always
be removed first when recovery is done. We will define a recurrence E(i, w), that gives
the value of the best possible solution to the RKP-RG considering items with indices j
such that j ≤ i and weight w for the initial solution. We will use the notation [bs ≥ w],
which has value 0 when bs < w and value 1 when bs ≥ w indeed holds.

E(i, 0) = 0
E(0, w) = −∞

E(i, w) = max

{
E(i− 1, w)
E(i− 1, w − ai) +

∑
∀s∈S [bs ≥ w]psci

When compared to the original recurrence, we can see that ci is replaced by
∑
∀s∈S [bs ≥

b]psci. In other words, we only add psci for the scenarios where the capacity constraint
is not exceeded. The correctness can be proven from the fact that recovery is done in the
inverse order in which items are added.

5.3.5. Dynamic Programming for RSSP-R and RKP-R

In this section we will show that for a fixed number of scenarios (e.g. |S| = 2), the
problem remains solvable in pseudo-polynomial time. To achieve this we will first take a
look at the Subset Sum Problem with Exact Recovery by Removal problem (in short:
E-RSSP-R ) with two scenarios. We will consider b0 as scenario - so we have a scenario
where we don’t have to recover and a scenario where we may have to throw some items
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away. This gives us a decision problem: is there a solution to the problem where we can
find a knapsack of exactly size b0, such that this knapsack contains a subset of exactly
size b0− b1. This problem can be reformulated as a partition in three parts problem: can
item-set |I| be partitioned into three disjoint sets, with set 1 exactly size b1, set 2 exactly
size b0 − b1 and set 3 the remainder of the items?

Lemma 5.3. The e-RSSP-R with two scenarios is equivalent to partition in three parts.

Proof. 1. If the partition in three parts problem has a solution, the e-RSSP-R has
a solution. Suppose we have a solution for the partition problem. From this
solution we will derive three disjoint sets I1, I2 and I3, with

∑
i∈I1 ai = b1 and∑

i∈I2 ai = b0− b1. We will take the union of I1 and I2 as the initial solution (which
is feasible, since b1 + b0 − b1 = b0. We will take I1 as the solution for scenario 1,
which is feasible by definition (it is a subset of a union of itself and another set and
its size is b1).

2. If the e-RSSP-R problem has a solution, we can derive a solution for the partition
in three parts problem. Suppose we have some set I0 as a solution for the main
scenario, and I1 as the knapsack we use for scenario 1. Suppose we need to find a
partition (I ′1, I

′
2, I
′
3), such that I ′1 must have size b1, I ′2 must have size b0 − b1 and

I ′3 contain the remainder of the items. We will use I1 for I ′1, which is feasible by
definition. Since I1 must be a subset of I0, we can use I0 − I1 for I ′2, and use all
unused items for I ′3.

Knowing that the 2-scenario problem can be solved using partition in three parts, we
take a look at a Dynamic Programming algorithm that is capable to solve this problem,
which is just a multi-dimensional variant of the Bellman recurrence, as shown in [Bel57].

Now let us apply this observation to derive a Dynamic Programming algorithm for
the RKP −R. If we have a new item to consider, we must put it in the main item-set
and any subset of the lower scenario item-sets, or don’t put it in any item-set at all.
Let us introduce the state variable F1(i, w0, w1), which gives the best value for a main
knapsack and it’s recovery knapsack, such that the recovery knapsack is a subset of the
main knapsack, where the recovery knapsack has size w0 and the main knapsack has
size w1. Now let’s consider the situation where we want to solve the problem for three
scenarios. We can extend the recurrence in the following way:

F2(i, 0, 0) = 0
F2(0, w0, w1) = −∞ if w0 6= 0 ∨ w1 6= 0

F2(i, w0, w1) = max


F2(i− 1, w0, w1)
F2(i− 1, w0 − ai, w1) + p0ci
F2(i− 1, w0 − ai, w1 − ai) + (p0 + p1)ci

It is possible to adapt this idea to derive a recurrence F3(i, w0, w1) that works when
we have 3 scenarios. The state variable F3(i, w0, w1, w2) gives the best value for a main
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knapsack of exactly weight w0 and two recovery knapsack of exactly weight w1 and w2,
such that both the recovery knapsacks are subsets of the main knapsack.

F3(i, 0, 0, 0) = 0
F3(0, w0, w1, w2) = −∞ if ∃s ∈ S : ws = 0

F3(i, w0, w1, w2) = max


F3(i− 1, w0, w1, w2)
F3(i− 1, w0 − ai, w1 − ai, w2 − ai) + (p0 + p1 + p2)ci
F3(i− 1, w0 − ai, w1 − ai, w2) + (p0 + p1)ci
F3(i− 1, w0 − ai, w1, w2 − ai) + (p0 + p2)ci
F3(i− 1, w0 − ai, w1, w2) + p0ci

Of course we can extend this approach to a situation where we have |S| scenarios:

F|S|(i, 0, 0, . . . , 0) = 0

F|S|(0, w0, w1, . . . , ws) = −∞ if ∃s ∈ S : ws = 0

F|S|(i, w0, w1, . . . , ws) = max


F|S|(i− 1, w0, w1, . . . , ws)

max
σ∈ς

F|S|(i− 1, w0 − ai, . . . , w′s − [s′ ∈ σ]ai, . . . )

+
∑

s∈σ psci

where
ς = 2S(i.e. the powerset of S)

[s ∈ σ] =

{
1 if s ∈ σ
0 if s /∈ σ

The powerset is the set that contains all subsets of a given set, including the empty
set. Proving the correctness of this algorithm can be done in a similar way as used in
Section C.1.

5.3.6. Branch and Bound for RKP-R

Let us consider Branch and Bound to solve the RKP-R. If we consider the ILP-formulation,
we have many a lot of variables and we would consider to branch on each item for each
scenario. Since Branch and Bound takes more time when it has more branching options,
we will consider a way to branch at most once on each item. We will introduce a tree-based
data structure to represents a knapsack of items and keeps track of the optimal recovery
solutions. We use the ideas from the original DP for the KP (discussed in Section 5.2.1),
to keep track of a recovery table. When we add an item to a knapsack, we calculate a
new recovery table, based on the old recovery table and the new item. This allows us to
efficiently calculate the exact profit, recovery included, of a knapsack. We introduce the
RecoveryKnapsack data structure in Algorithm 5.

Now if we use the RecoveryKnapsack we can branch on the addition or omission of
items in the initial knapsack and we will always get the exact recovery value of a current
knapsack. In a typical Branch and Bound tree for the KP, each depth-level of the tree is
associated with a particular item and each node has two possible branches: one which
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Algorithm 5 RecoveryKnapsack Data Structure

Object variable: recoveryTable← new Table[b0 − b|S|] initialize with ∞
Object variable: item← NULL
Object variable: size← 0
Object variable: profit← 0
Object variable: parent← NULL

Method expand(i) {Creates a new KP node and calculates recovery}
Variable result← new RecoveryKnapsack()
result.item ← i
result.size ← this.size +ai
result.profit ← this.profit +ci
result.parent ← this
for 1 ≤ w ≤ b0 − b|S| do

if ai ≤ w then

result.recoveryTable[w]← min

{
this.recoveryTable[w]
ci

else

result.recoveryTable[w]← min

{
this.recoveryTable[w]
this.recoveryTable[w − ai] + ci

end if
end for
return result

Method getObjectiveV alue() {Calculates the objective value for this node}
Variable result← this.profit
for s ∈ S, s 6= 0 do

if this.size −bs > 0 then
result← result− ps · this.recoveryTable[this.size−bs] {We assume

∑
s∈S

ps = 1}

end if
end for
return result

Method contains(i) {Checks whether the KP this nodes represents contains i}
Variable current← this
while current 6= NULL do

if current.item = i then
return True

end if
current← current.parent

end while
return False
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includes the item at its depth and one which excludes the item. Now there are a lot
of possibilities to order the items, which will influence the depth at which an item is
considered. We may consider orderings by smallest or greatest size, smallest or greatest
profit or smallest or greatest ratio. Combined with the order in which we omit or include
items, we have 12 different possible branching strategies in a typical Branch and Bound
algorithm for KP. However, a good Branch and Bound algorithm benefits from having a
good upper-bound algorithm as well, since this allows us to bound the tree better. The
next section will consider methods to calculate such upper and lower-bounds.

5.4. Upper and Lower-bounds

5.4.1. Iterative DP Lower-bound for RKP-R

Let’s reconsider the basic DP for knapsack. In this Dynamic Program, new knapsacks are
generated by adding a single item to them (by incrementing the item index by one each
time). Now let’s say we focus on finding a initial knapsack solution for the RKP-R. In
Algorithm 5, we presented a data structure to efficiently calculate the optimal recovery
value for each scenario when only adding items sequentially.

Let us combine this data structure with the basic DP for knapsack to find an initial
item-set for the RKP-R, while taking recovery into account. Since the value is not directly
dependent on which item is added (because of the recovery), we will not use solution
values in the recurrence, but create a recurrence that contains an instance of our data
structure instead. In this recurrence G(i, w), i represents the index of an item while w
represents the size of the knapsack we are currently considering.

G(0, 0) = new RecoveryKnapsack()
G(0, w) = empty, for w > 0

G(i, w) = best of

{
G(i− 1, w)
G(i− 1, w − ai).expand(i) if G(i− 1, w − ai) nonempty

While this approach seems to work good in practice, it gives no guarantee in finding
the optimal solution. The major problem is that the domination criterium is not fully
valid in this case: it is possible that adding an item to a non-optimal set for a certain
size w′ yields add a better solution than adding that same item to the optimal solution
for w′. However, if all the items in the optimal initial solution are added before adding
any other items, this approach will find the optimal solution. Because of this, one might
believe we may find the optimal solution by repeating this scheme |I| times, since in this
way, each possible permutation of the items is contained as a sub-sequence in the DP.
However, this approach is still not valid, since it is possible that each possible subset of
the optimal solution is dominated by a subset that can’t lead to the optimal solution.
An example of this is shown in Table 2. In this case, the optimal solution doesn’t contain
item 3, but if we remove any item from the optimal solution, the remaining subset is
dominated by a set that contains 3.

Still, based on experiments conducted in Chapter 6, this approach can be applied with
some success as an lower-bound algorithm. Since the order of the items is important for
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Items:
i 1 2 3 4

ai 8 4 6 2
ci 290 170 241 70

Scenarios:
s 0 1

bs 15 13
ps 0.5 0.5
Feasible Sets:

Items Size Profit Scenarios Recovery Value

{1, 2} 12 460 {0, 1} 460
{1, 3} 14 531 {0} 410.5
{1, 4} 10 360 {0, 1} 360
{2, 3} 10 411 {0, 1} 411
{2, 4} 6 240 {0, 1} 240
{3, 4} 8 311 {0, 1} 311
{1, 2, 4} 14 530 {0} 486
{2, 3, 4} 12 481 {0, 1} 481

Subsets from the optimal set are dominated
Set Dominated by

{1, 2} {2, 3, 4}
{1, 4} {2, 3}
{2, 4} {3}

Table 2: Example where the Iterative DP can go wrong
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the solution we will find, we may consider different strategies for ordering our items. The
whole algorithmic scheme for this Iterative Dynamic Programming approach is presented
in Algorithm 6. Since the order of the items is important, we may choose different
strategies to reorder our items after each iteration. We may consider orderings based
on size, profit or ratio. It is also possible to reverse the order of the items after each
iteration. Another idea is to randomize the order of the items after each iteration. These
four options are all explored in Chapter 6.

5.4.2. Local Search Lower-bounds

By using Local Search, we can search for solutions without a real guarantee on the
optimality of the solution. Such a solution is a lower bound for the solution value of the
problem. One of the important aspects of Local Search is the way you define your solution
space. When we consider robustness variants of the Knapsack Problem, a solution should
at least contain which items are chosen initially. For the recovery solutions, we have two
choices: we explicitly keep track of all recovery solutions (and define operations on the
recovery) or we focus on the initial solution and take recovery implicitly into account by
using the objective value of the current solution, including recovery.

When we take the implicit approach, we need to calculate the recovery on the fly. A
possible way to do this is by using a recovery variant of the basic knapsack Dynamic
Program from section 5.2.1. This way a solution consist only of the initial choices, since
the additional properties are implied by solving the recovery problem for the initial
solution.

Depending on whether we define our recovery solution explicitly or implicitly, we also
have different choices for our neighborhoods. If we have an explicit solution space, we
need operators that can add and remove items from the initial part of the solution, but
also from and to each of the recovery solutions. In addition to that, our operators need to
be constrained by the recovery constraints, yielding different operations for cases where
we recover by removal and cases where we recover by swapping.

Considering the solution space, it is plain to see that the solution space with implicit
solutions is much smaller than the solution space with explicit solutions. For example, if
we consider recovery by removal, we can have a solution where we have a lot of items in
the initial item-set, but no items in any of the scenario items, while there is room for
items in these sets. Such a solution can be represented by using the explicit variant of
the solution space, but not by the implicit version, since the recovery is not optimal in
this case. The implicit variant will calculate the optimal recovery and thus give a better
solution for the same initial item-set.

However, the drawback of the implicit variant is the fact that it needs to perform the
recovery algorithm on each new solution. Since the recovery algorithm needs to solve a
knapsack problem, this can take up a lot of time. In cases where we add an item, we
can calculate a single column, if we keep the previous Dynamic Programming tables
in memory. When an item is removed, it is possible a lot of work needs to be done.
Calculating the exact value of an explicit solution is much easier, since the exact value of
the solution only depends on each item-set.

63



Algorithm 6 Iterative DP for RKP-R

Initialize Global table← new Table [b]
table[0]← newRecoveryKnapsack() {See Algorithm 5}

Procedure IterativeDP
Initialize: improve← True
Initialize: iteration← 0
Initialize: lastBest
while improve ∧ iteration < |I| do
improve← False
Reorder(I, iteration) {Reorders the items according to some procedure}
doDP() {Executes the doDP() procedure from below}
best←findBest(table) {Retrieves the best solution currently in table}
if best > lastBest then
improve← True
lastBest← best

end if
iteration← iteration+ 1

end while
return lastBest

Procedure doDP
for i ∈ I do

Initialize newTable← new Table [b] {Initialize a new table}
for 0 ≤ w ≤ b do

if w − ai < 0 ∨ i ∈ table[w − ai].items() then
newTable[w]← table[w] {If w too small or i already used, keep the old solution}

else
if a ≥ 0 ∧ ¬table[w − ai].contains(i) then
newTable[w]← table[w − ai].expand(i) {Add i and calculate recovery}
c1 ← table[w].getObjectiveValue()
c2 ← newTable[w].getObjectiveValue()
if c1 > c2 then
newTable[w]← table[w] {Retain the best option for size w}

end if
end if

end if
end for
table← newTable {Store the new table at the location of the old one}

end for
return
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Besides implicit and explicit solutions, we can also explore balanced variants of the
solutions, based on the ideas presented in section 5.2.2. With this approach we allow
invalid solutions. We may only add items if the capacity constraints are not violated and
can only remove items if they are violated. The difficulty of such an approach lies in
the fact that we have two kinds of solutions - feasible and infeasible solutions. Since the
infeasible solutions are usually very close to feasible solutions, it would be bad practice
to give them a negative solution value, but since there are infeasible they should have a
lower value than the feasible solutions. If this isn’t the case, the Hillclimbing algorithm
will refuse to decrease the solution value of such a solution and therefore refuses to make
the solution feasible again.

The nice part about using the balanced approach is that besides giving a lower-bound
(if we keep track of the feasible solution with the highest value we have seen), it also
gives an upper-bound by keeping track of the infeasible solution with the lowest value we
have seen.

5.4.3. LP-Relaxation Upper-bound

Now let us consider an upper-bound. One of the simplest upper bound algorithms for
the Knapsack Problem is the Linear Programming relaxation. In general, the Linear
Programming relaxation removes the constraint that the variables should have integer
values in the solution. In the Knapsack Problem, this implies that the LP-relaxation
allows us to take an arbitrary part of each item, instead of the item as a whole. This
approach is quite straightforward and discussed in both textbooks on the Knapsack
Problem, [MST90] and [KPP04].

Let us consider our items in a descending order by ratio, so item ci
ai
> ci+1

ai+1
. Since we

can take arbitrary parts of each item, we can fill our knapsack to a point where the sum
of the weights is equal to the capacity constraint. Now we can swap some part for any
item in the knapsack for a part of equal size that is not currently in the knapsack. If we
swap a part of item i for a part of equal size of item j, our solution value will improve if
and only if

cj
aj
> ci

ai
. Now suppose we add items to our knapsack in order of descending

ratio, until an item i doesn’t fit. We will take the part of i that fills up the knapsack.
Now assume we can improve our solution by swapping. We will find that for any part
of any item i in the knapsack, all parts of all items j that have ci

ai
>

cj
aj

are already in

the knapsack and can’t be added a second time. Since it is impossible to improve the
solution, it must be optimal.

Now suppose we have the RKP-R and repeat the same process to find initial and
recovery solutions for each of the scenarios. Since the ordering by ratio is the same for
each item-set, the order in which we add the items will be the same. This implies that, if
the initial capacity constraint gives the greatest capacity, no recovery item-set for any
scenarios will have a larger part of any item in it than the initial item-set has. Thus,
applying this approach gives a feasible solution for the LP-relaxation of the RKP-R and
must be optimal, since the same proof holds in this case.

If we want to calculate the LP-relaxation by using a simple algorithm, we can use the
pseudo-code in Algorithm 7.
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Algorithm 7 LP Relaxation Value for RKP-R

Value z ← 0
Sort items on ratio so that ci

ai
> ci+1

ai+1

for Scenario s = |S| to 0 do
Size a← 0
for Item i = 1 to |I| do

if a+ ai ≤ bs then
z ← z + psci
a← a+ ai

else
if a < bs then
z ← z + bs−a

ai
psci

a← bs
end if

end if
end for

end for
return z

5.4.4. Lagrangean Relaxation Upper-bound

When we take a look at the ILP of the RKP-R, we can move the capacity constraints into
the objective by rewriting by introducing Lagrangean multipliers λs for each scenario s.
Consider the ILP for the RKP-R.

max
∑
i∈I

p0cixi +
∑
s∈S

∑
i∈I

psciy
s
i

s.t.
∑
i∈I

aixi ≤ b0∑
i∈I

aixi ≤ bs ∀s ∈ S

xi − ysi ≥ 0 ∀s ∈ S, ∀i ∈ I
xi, y

s
i ∈ {0, 1} ∀s ∈ S, ∀i ∈ I

The probability of our initial solution is denoted by p0. Since we deal with probabilities,
we may assume p0 +

∑
s∈S′ ps = 1, i.e. all probabilities sum to 1. Now let us consider a

different formulation for the RKP-R, using ȳsi variables that represent the removal of an
item i in a scenario s, instead of retaining an item i in scenario s. Using the principle
that the probabilities sum to 1, we can rewrite the object in such a fashion that we
take the unweighted sum of the profits in the initial solution and subtract the weighted
profits of the items that are removed in each scenario. Doing this, we get the following
formulation:
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max
∑
i∈I

cixi −
∑
s∈S

∑
i∈I

psciȳ
s
i

s.t.
∑
i∈I

aixi −
∑
i∈I

aiȳ
s
i ≤ bs ∀s ∈ S∑

i∈I
aixi ≤ b0

xi − ȳsi ≥ 0 ∀s ∈ S,∀i ∈ I
xi, ȳ

s
i ∈ {0, 1} ∀s ∈ S,∀i ∈ I

We can derive a Lagrangean Dual Problem by moving the capacity constraints into
the objective using Lagragian multipliers λ0, λ1, . . . λ|S|. By doing this, we modify the
objective to∑

i∈I
cixi −

∑
s∈S

∑
i∈I

psciȳ
s
i +

∑
s∈S

λs(bs −
∑
i∈I

aixi +
∑
i∈I

aiȳ
s
i ) + λ0(b0 −

∑
i∈I

aixi)

To make things more readable, we introduce an extended set S′ that contains all the
scenario indices from S and the index 0 for the initial solution as well. So, S′ = S ∪ {0}
Using this set S′, we can simply the objective to∑

i∈I
cixi −

∑
s∈S

∑
i∈I

psciȳ
s
i +

∑
s∈S′

λs(bs −
∑
i∈I

aixi +
∑
i∈I

aiȳ
s
i )

We will simplify this formulation to∑
i∈I

(ci −
∑
s∈S′

λsai)xi +
∑
s∈S

∑
i∈I

(−psci + λsai)ȳ
s
i +

∑
s∈S′

λsbs

The remaining constraints in the Lagrangean Dual Problem state that we can only
remove an item for recovery for scenario s if it was taken initially. The goal is to choose
positive values for the Lagrangean multipliers in such a fashion that the optimal solution
for the fixed multipliers is minimized. Since the remaining constraints are very simple, it
is possible to reduce the problem to a much simpler form.

If we apply the Lagrangean relaxation on the capacity constraint of the normal KP,
the optimal value of dual multiplier of the capacity constraint is the ratio of the split
item, which is discussed in [MST90]. The split item is the first item that doesn’t fit
completely if we take the items by best ratio. Now let us say that îs is the split item
for scenario s. We get the minimized value for the Lagrangean Relaxation if we put
multiplier λs = ps

cîs
aîs

, which is quite similar to the value for the multiplier in case of the

normal KP. The proof for this statement can be found under Section C.3.
Of course, it is also possible to apply Lagrangean relaxation to the recovery constraints.

This approach is discussed in Section 5.4.6.

5.4.5. Surrogate Relaxation Upper-bound

We will now consider the Surrogate Relaxation, introduced by [Glo68]. Suppose we have
a couple of constraints on a problem, with indices j, where constraints have the form
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∑
i a
j
ixi ≤ bj , with xi as the ith variable and aji as a factor in the linear constraint. Now

we will combine a couple of constraints with indices in J ′ to a single constraint by using
a surrogate factor µj for each of these constraints. The form of the resulting constraint is∑

j∈J ′(µj
∑

i a
j
ixi) ≤

∑
j∈J ′ µjbj , i.e. we just add all the constraints to each other after

multiplying each constraint with a certain factor µj for that constraint. Just like with
the Lagrangean Relaxation, the parameters µj should be chosen in such a fashion that
the optimal value of the objective of the resulting problem is minimized (in case the
original problem is a maximization problem and vice versa).

LRKP −R = max
∑
i∈I

p0cixi +
∑
s∈S

∑
i∈I

psciy
s
i

s.t.
∑
i∈I

aixi ≤ b∑
i∈I

aiy
s
i ≤ bs ∀s ∈ S

xi ≥ ysi ∀i ∈ I, ∀s ∈ S
xi, y

s
i ∈ {0, 1} ∀i ∈ I, ∀s ∈ S

When we apply the surrogate relaxation to the LRKP −R, we get the following:

max
∑
i∈I

p0cixi
∑
s∈S

∑
i∈I

psciy
s
i

s.t.
∑
i∈I

µ0aixi +
∑
s∈S

∑
i∈I

µsaiy
s
i ≤ µ0b+

∑
s∈S µsbs

xi ≥ ysi ∀i ∈ I, ∀s ∈ S
xi, y

s
i ∈ {0, 1} ∀i ∈ I, ∀s ∈ S

When we consider this surrogate relaxation of RKP-R problem, we are left with a
problem that only has a single capacity constraint and a lot of constraints that state
that an item can only be chosen after recovery if that item is selected initially. In this
model we have multiple variables for each item: a variable that represents whether the
item is chosen in the initial solution and a variable for each scenario that represents
whether the item is chosen in the recovery solutions. Since the recovery variables of a
single item are only dependent on the selection of the initial copy of that item, we have a
single precedence tree on the variables of each item with the initial variable as the root
and the recovery variables as the children. We will reduce this problem to a Precedence
Constrained Knapsack Problem by considering all these separate variables as separate
items. We add a single dummy item with weight and profit 0, and we add precedence
constraints from this dummy node to all the roots of the trees we had. Now we are left
with a single precedence tree. Thus, by using the surrogate relaxation of the RKP-R,
we get the Precedence Constrained Knapsack Problem where the precedence constraints
form a tree. An example for a RKP-R with 2 scenarios beside the initial scenario and 3
items is presented in Figure 5. We discussed an efficient algorithm for this Precedence
Constrained Knapsack Problem on trees in Section 5.2.3.
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Figure 5: PCKP-tree for a RKP-R surrogate relaxation with 3 items and 2 scenarios

5.4.6. Recovery Relaxation Upper-bound

Another way to calculate an upper-bound for the RKP-R is by removing the recovery
constraints (that have the form ysi ≤ xi). Suppose we remove all recovery constraints
from the problem. We are left with a problem where we must select an item-set for each
separate scenario, where we can disregard the relationships between the item-sets. We
can solve this problem by calculating a table with the basic Dynamic Program from
section 5.2.1. We can use a single table to determine the optimal knapsack for each of
the scenarios. The objective value is the sum of the values of the optimal knapsack for
each scenario multiplied by the probability of those scenarios.

Beside completely removing the constraints, another option is to apply Lagrangean
relaxation to them. We can do this by using a Lagrangean dual λsi for each item i for
each scenario s and moving the recovery constraints xi ≥ ysi = xi − ysi ≥ 0 into the
objective function. The new objective function becomes

max
∑
i∈I

p0cixi +
∑
s∈S

∑
i∈I

psciy
s
i +

∑
i∈I

∑
s∈S

λsi (xi − ysi − 0)

equals

max
∑
i∈I

(p0ci +
∑
s∈S

λsi )xi +
∑
s∈S

∑
i∈I

(psci − λsi )ysi

Now let us consider this objective. We want to find the lowest possible upper-bound
(which is the solution to the Lagrangean dual problem). We will start will all λsi at 0. We
will define ↑ λsi as the increase of λsi currently under consideration. We will show that it
is only necessary to increase the lambda λsi if our current solution has i selected for the
initial item-set, but not for the recovery item-set of scenario s (i.e xi = 0 while ysi = 1).

xi = 0, ysi = 0 If we raise λsi , it is clear the objective cannot decrease.

69



xi = 1, ysi = 0 If we raise λsi in this case, the objective value will increase, since ysi was 0
and its costs were decreased, while xi was already 1 and its costs were raised.

xi = 1, ysi = 1 If we raise λsi in this case, the objective value will at least be equal to the
value of the the current solution. Since λsi is raised, xi gains higher costs so it will
remain in the current solution. Because the costs of ysi are lowered, there are two
possibilities: ysi stays 1 or ys becomes 0. If ysi stays 1, the value of solution doesn’t
change, because the exact cost decrease for ysi is added to the solution value as an
cost increase for xi. If ysi becomes 0, there are two options: the only ysi changes, or
other elements of the item-set for scenario s change (so, there is at least some j
such that ysj was 0 and becomes 1).

Only ysi changes Now suppose ysi becomes 0 and nothing else changes: the objective
value is increased by ↑ λsi since the costs of xi increase by it, while it decreases
by min{↑ λsi , psci − (λsi+ ↑ λsi )}, which must be smaller or equal to ↑ λsi . This
implies the objective value is not decreased in this case.

Item-set for s changes The objective value will still increase by ↑ λsi . Now since a
new solution was chosen for the scenario s item-set, this item-set must yield a
better value than the previous item-set with the decreased costs for item i. If
we had retained the solution with item i, the value of the solution would have
been decreased by ↑ λsi . Since the new item-set dominates that solution, the
value of the solution will be decreased by less than ↑ λsi , so the total objective
value will increase.

xi = 0, ysi = 1 If we raise λsi , while the item-sets remain the same, the objective value
is decreased, since xi remains zero 0. If the item-sets do change, there are two
possibilities: ysi becomes 0 or xi becomes 1. If ysi becomes 0, there must be some
item-set for scenario s that was dominated before by the item-set with item i, but
now itself dominates that item-set. The difference in value between these item-set is
the decrease of the objective value. If xi becomes 1, the initial item-set is dominated
by an item-set that now includes item i. Suppose we increased λsi exactly enough
such that the value of the item-set with i is equal to the previous initial item-set.
This implies that the value of the initial item-set didn’t improve, while the value
of the recovery item-set for scenario s was decreased, so the objective value was
decreased.

As a result, the only case where we want to increase a λsi is the case where ysi is 1
while xi is 0, since the other cases can not possibly decrease the objective value. This
principle can be used to design a subgradient descent method [SKR85].

5.5. Linear Programming Techniques

5.5.1. Separate and Combined Phases Decompositions

Now suppose we use the decompositions presented in Sections 3.2 and 3.4.2 for the
RKP-R. Let us first consider the separate recovery decomposition. In this decomposition,
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a column in our restricted master problem represents either a single initial knapsack, or
a recovery knapsack. Since we use the LP-relaxation of the restricted master problem
to find new variables, let us consider the cases where the optimal solution to the LP
relaxation leaves us with a fractional solution that is infeasible for the original problem.

Suppose we have 2 scenarios and 3 items with a1 = 3, a2 = 3, a3 = 10 with ci = ai, with
b0 = 10 and b1 = 3 and p0 = p1 = 0.5. Clearly, the optimal solution is the case where
we choose item 3. However, when we may use a fractional solution with the separate
recovery decomposition, we can choose a solution where we take items 1 and 2 for 0.5
and choose the solution where we take item 3 for 0.5. This gives us the opportunity to
choose a solution with item 1 as the recovery solution for scenario 1 with value 0.5, but
also choose a solution with item 2 as the recovery solution for scenario 1. While the value
of the optimal integer solution is 5, this fractional solution gives a value of 5.5.

Another example is the case where we have items with sizes a1 = 15, a2 = 19, a3 =
6, a4 = 7 with ci = ai and scenarios b0 = 36 and b1 = 22. If calculate the optimal solution
for the LP-relaxation of the separate recovery decomposition, we get the item-set {1, 2}
with value 2

3 for the main solution and the item-set {2, 3, 4} with value 1
3 for the main

solution. This allows us to take item-sets {2}, {1, 3} and {1, 4} each with value 1
3 for the

scenario. However, the item-sets {1, 3} and {1, 4} are not even a proper subset of any of
the sets we chose for the main scenario - they are a subset of the combination of all sets
chosen for the main scenario.

Now suppose we will consider the combined recovery decomposition. With this
decomposition, we will look for solutions that combine the initial and recovery solution
for our columns. This way, it is impossible that we choose some recovery item-set that is
not a subset of a selected initial item-set. However, it is still possible to get a fractional
solution for our LP-relaxation of the problem.

Let us again consider a subset sum instance, with items a1 = a2 = 4 and items
of size a3 = a4 = 6 with ai = ci. Our scenarios are b0 = 13, b1 = 10, b2 = 8 with
p0 = p1 = p2 = 1

3 . The best solution for scenario 1 is the situation where we have {1, 3},
while the best set for scenario 2 is the situation where we have {1, 2}. Now we can take
two columns with {1, 3} and {2, 4} as both an initial solution and scenario 1 with value
0.5. Since we have two different item-sets, we can now choose a column with {1, 2}
for scenario 2 with value 0.5 and a column with {3, 4} as a initial solution and {3} for
scenario 2 with value 0.5. This gives us a situation where the initial item-sets chosen are
not equal.

To conclude, these decomposition may not give an optimal solution without resorting
to branch and price. A trivial idea is to branch on an item, but this still leaves a lot
of possibilities. We can first branch by forbidding an item and after we explored that
branch, make it mandatory, but also vice versa. There is also the question about the
kind of item we will choose - do we choose an item depending on ratio, profit or costs.
And this also leaves the question whether we take the greatest or the smallest item with
regard to this measure. The question which branching strategies will work is explored
through experimentation in Chapter 6.
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5.5.2. Scenario Column Decomposition

Beside the Separate and Combined Phases Decompositions, we can also consider another
type of decomposition. For each scenario, we may select each item exactly once. Instead
of choosing an item-set for each scenario, we can also consider all possible sets of scenarios
for each of the items and choose a single scenario set for each item. If we don’t use an
item at all, we will choose an empty set of scenarios for the item. If we choose it scenario
2 and 4, we will use scenario set {2, 4} for the item. Suppose xiσ is a binary variable that
states whether we will use a subset σ ⊆ S for item i. We define 2S as the superset of S,
which is the set that contains all possible subsets of S. We can now create an Integer
Linear Program of the following form:

max
∑
σ∈2S

∑
i∈I

(p0 +
∑
s∈σ

ps)cix
i
σ

s.t.
∑
σ∈2S

xiσ ≤ 1 ∀i ∈ I∑
σ∈2S

∑
i∈I

[s ∈ σ]aix
i
σ ≤ bs ∀s ∈ S

If we solve this formulation as an ILP, we get a solution that is feasible in the original
form: for each item we have a set of scenarios. We can set each xi from the original
problem to 1 if a column for that item was selected. We set each ysi of the original
problem to 1 if that item i has a column selected with a non-zero factor in the constraint
row for s. Since the capacity constraints are part of this approach, the derived solution
will be feasible for the original problem. This correspondence can be reversed to see
that a solution for the original problem can also be translated to a solution for this
formulation, while remaining feasible. However, the LP-relaxation of this formulation
gives the same value as the LP-relaxation of the original formulation of the RKP-R.

Theorem 5.4. The optimal value of the LP-relaxation of the Scenario Column Decom-
position is equal to the LP-relaxation of the original ILP formulation of the RKP-R.

Proof. Let us consider the ILP-formulation of the RKP-R and its LP-relaxation.

LRKP-R = max
∑
i∈I

p0cixi +
∑
s∈S

∑
i∈I

psciy
s
i

s.t.
∑
i∈I

aixi ≤ b∑
i∈I

aiy
s
i ≤ bs ∀s ∈ S

xi ≥ ysi ∀i ∈ I, ∀s ∈ S
xi, y

s
i ∈ {0, 1} ∀i ∈ I, ∀s ∈ S

In Section 5.4.3 we discussed how to calculate the optimal solution of the LP-relaxation
of this LRKP-R. We use Algorithm 7 to do this. This algorithm starts with sorting the
items by decreasing ratios and greedily adds items in this order to the knapsack of each
scenario. The item that does not fit entirely, is added fractionally so that the knapsack
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is filled to its exact capacity. Since the order of the items is the same for each scenario,
the recovery constraint holds automatically.

If we consider the LP-relaxation of the original problem, each scenario item-set will
contain all items sorted by ratio up until the split item for that scenario, while the split
item is only partly in the knapsack. We start with the item i with the highest ratio and
find a variable xiσ for that item with all scenarios σ, and fix it to 1. We continue doing
this for the different items, until we reach the split item for the smallest scenario s. We
will now consider two variables xiσ and x′iσ−s. Now suppose that we have b′s capacity left

in our capacity constraint for scenario s. We will set the value of xiσ to b′s
ai

and the value

of x′iσ−{s} to 1− b′s
ai

. We continue using all scenarios except the smallest, until we reach
the next split item for the scenario which is now the smallest. Again, we repeat the
procedure.

It is not very difficult to see that this yields a solution that is exactly the same as the
solution to the LP-relaxation of the LRKP-R.

Therefore, we may conclude that this approach is not practical to use in practice,
since the ILP is difficult to solve and we have a more efficient way to calculate the
LP-relaxation.

5.5.3. Cutting Plane Techniques

Suppose we have an ILP formulation of the original KP (i.e. {max
∑

i∈I cixi|
∑

i∈I aixi ≤
b, xi ∈ {0, 1}∀i ∈ I}). When we use the LP-relaxation of this problem, it is possible we
find a solution where all items have an integer value. In such a case, the LP-relaxation is
also feasible for the original KP. However, in many cases, the LP-relaxation will have a
fractional item in its solution. Now suppose we have some item-set I ′ ⊆ I as the item-set
for the LP-relaxation, where an item i is in I ′ if it is has a non-zero value in the solution
to the LP-relaxation. Since there is a fractional item in I ′, we know that the solution to
the original KP can’t have all items in I ′. Suppose the solution to the KP can contain
more items from I ′ than |I ′| − 1. This must imply that all items from I ′ are in the
solution, but the sum of the sizes of these items exceed the capacity constraint, so that
solution must be infeasible. We can generate a new constraint:

∑
i∈I′ xi ≤ |I ′| − 1. This

constraint states that the number of items from I ′ in the solution to the problem, can be
at most the number of items in I ′ minus one.

The additional constraints that are added to the LP-model to cut off solutions that
are not feasible in the ILP-model, are called Cutting Planes. The technique of Cutting
Planes was introduced in the 1960’s by [Gom58]. within a Branch-and-Cut approach, a
technique that combines Branch-and-Bound with Cutting Planes.

Cutting Planes are an important technique to reduce the intergrality gap and can also
be applied to recoverable variants of the KP. Let us consider the RKP-R again. Suppose
we have a solution to the LP-relaxation, where some scenario has a fractional item-set.
Let us call I ′ the set of indices of items that are at selected for at least a part. We can
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now generate a cut that states
∑

j∈I′ xi ≤ |I ′| − 1, or
∑

j∈I′ y
s
i ≤ |I ′| − 1, which forbids

the current fractional item-sets, but allows all other item-sets.
However, we choose to focus on column generation in our experimentation. While this

is a possible way to solve this specific problem, we have no way of telling it is practical
to do so.
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6. Experiments

6.1. Introduction

In this Section, we will conduct computational experiments using the algorithms for the
RKP-R presented in the previous sections. To be able to apply these algorithms, we need
problems to apply them to. We discuss the generation of problem instances in Section
6.2. In Section 6.3, we discuss the experiments themselves.

Our experiments will consist of three phases. In the first phase we will test a couple of
algorithms on the different types of instances to find the types that are the most difficult.
In the second phase we will test a lot of different algorithms with varying parameters
against a small set of instances of the types selected after the first phase to determine
which ones work good and fast, and which ones don’t. In the third phase we will test the
best algorithms from the second phase against a larger data-set, to determine the effect
adding more items and more scenarios to certain instances on the running time and in
case of local search algorithms on the optimality gap.

6.2. Problem instances

Since some of the algorithms have a running time of O(b2) in the maximum knapsack
bound b and our local search algorithms use a dynamic programming algorithm in which
bmax − bmin is an important factor, we want to keep our value of bmax small enough to be
able to perform a lot of experiments. At a later stage we will increase these values to
search for the limits of our algorithms.

However, these algorithms could be improved by including the balanced knapsack
technique. In such a way, the running time is mostly influenced by the size of the largest
item and less by the value of bmax.

We will first discuss how to generate instances. To generate an instance, we need a set
of items and a set of scenarios. We introduce a number of parameters for the generation
of instances. For the generation of our item-sets, we introduce a parameter M that
defines a method, a parameter R (which is usually an indication for size of the items)
and a parameter n that defines the number of items. For the generation of the sets of
scenarios, we have a parameter B, which is the sum of all items in the item-set we are
currently considering, a parameter k that defines the range of scenario probabilities and
a parameter ρ that defines the range of scenario capacities.

6.2.1. Generating Items

We begin by generating items for our instance. A lot of research has been done to find
difficult instances of the regular knapsack problem. For our experiments we will use the
research done by [Pis05] (also available on page 150 of [KPP04]) to create our problem
instances. The rest of this section is a summary of this work, but it is included for reasons
of convenience. There are a number of important instance classes resulting from this
research, each dependent on a random range parameter R:
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• Uncorrelated instances Both ai and ci are chosen randomly from [1, R]. These are
often easy to solve

• Weakly correlated instances ai is chosen randomly from [1, R] and ci is chosen
randomly from [ai −R/10, ai +R/10]. These instances have a strong correlation
between items, despite of their name. It can represent real life data in such a way
that in general the return of an investment is proportional to the sum invested,
proportional to some small variations.

• Strongly correlated instances ai is chosen randomly from [1, R] and ci = ai+R/10. It
represents real life data in the sense that the return of an investment is proportional
to the sum invested, but there is a fixed charge for each investment. The problems
are hard to solve because in general there is a large gap between the continuous
and integer solution of the problem and it is hard to solve the problem in such a
fashion that there is no slack in the capacity constraint.

• Inverse strongly correlated instances ci is chosen randomly from [1, R] and ai =
ci +R/10. These are like the strongly correlated instances, but the fixed charge is
negative.

• Almost strongly correlated instances ai is chosen randomly from [1, R] and ci is
chosen randomly from [ai +R/10−R/500, ai +R/10 +R/500]. These problems
have both some kind of a fixed charge and also some noise. They represent both
the properties of strongly and weakly correlated instances.

• Subset Sum instances ai is chosen randomly from [1, R] and ci = ai. These instances
are often difficult to solve, because the simple upper-bound on the value of and
instance is always equal to the capacity constraint.

Besides these general types of knapsack instances, [Pis05] also presents a couple of
difficult instances with small coefficients. We give a short description.

• Spanner instances span(v,m) A spanner-set takes the size of the spannerset v,
the multiplier limit m and some item distribution as inputs. A set I of v items
is generated according to our input distribution. The set is normalized to I ′ by
dividing sizes and profits by m+ 1, i.e. ai′ = ai/m+ 1 and ci′ = ci/m+ 1. The set
is generated by repeatedly choosing an item k from I ′ and a multiplier µ from the
interval [1,m]. The resulting item has ai = µ ∗ ak′ and ci = µ ∗ ck′ . Computational
experiments have shown that smaller value of v, for example v = 2 gives hard
instances.

• Multiple strongly correlated instances mstr(k1, k2, d). Each item i gets a size ai
chosen randomly from [1, R]. If ai is divisible by d, ci = ai+k1, otherwise ci = ai+k2.
The weights ai from the first group will be multiples of d, so using only these weights
you can only fill up to dbc/dc of the capacity. To obtain a completely filled knapsack,
items from the other group must be chosen. Computational experiments have shown
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that very difficult instances can be obtained by mstr(3R/10, 2R/10, d). d = 6 gave
the most difficult instances, but values between 3 and 10 work good.

• Profit Ceiling instances pceil(d) Sizes ai are randomly chosen from [1, R] and profits
are ci = ddai/de. In experimental results, d = 3 was a good parameter to create
difficult instances.

• Circle instances circle(d) Sizes ai are randomly chosen from [1, R] and profit ci
becomes d

√
4R2 − (w − 2R)2. The profits can be seen as a function of the weights

that forms an ellipsis.

6.2.2. Generating Scenario’s

In the research of [Pis05], 100 regular knapsack instances were generated for a single set
of items. The capacity of each instance with instance number h = 1, ..., 100 was chosen
as b0 = h

101

∑
i∈I ai. Since our scenarios have multiple capacities with probabilities, we

will use a different way to generate the scenarios. Two properties are important: the
spread of these probabilities and the spread of the capacities. We will express the spread
of the probabilities with a single integer number k, such that the initial probabilities p′s
of our scenarios s ∈ S are initially set to a random value from the range [1, k]. After all

our scenarios we will scale our scenarios, such that ps = p′s∑
s∈S p

′
s
. If we choose a value

k = 1, the probability distribution of the scenarios will be uniform (i.e. each scenario has
a probability 1

|S|).
For the values of the capacities we know that any instance with a bmax < amin is

trivial, as well a each instance with bmax ≥
∑

i∈I ai. This means that we should look for
our capacities in the range [amin,

∑
i∈I ai − 1]. To make our range more readable, let

us define an upper-bound on the capacities B =
∑

i∈I ai. Since have a capacity that is
very close to

∑
i∈I ai − 1 means that almost all items will be taken and a capacity of

amin means that almost all items won’t be taken, it is expected that more interesting
instances will have capacities somewhere in the range of [1

4B,
3
4B]. For a given set of

items and a given ratio ρ ∈ [0, ..., 1], we will create three instances. One with capacities
random chosen from the range [ρB,B], on with capacities in the range [ρ3

4B,
3
4B] and

one with capacities in the range [ρ1
2B,

1
2B].

6.2.3. Generating Instances

In short, we generate instances using the following steps:

1. Choose a number of items n, a number of scenarios s, choose a method to generate
items M with parameter R and possibly additional parameters, choose a spread for
the scenario probabilities k and choose a spread ratio for the scenario capacities ρ.

2. Use M and its parameters to generate an item-set I with n items.

3. Calculate B such that B =
∑

i∈I ai.
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4. (Optional) If B exceeds a certain maximum value Bmax, set B to Bmax.

5. Generate a scenario set S1 with normalized probabilities from [1, k] and capacities
in [ρB,B].

6. Generate a scenario set S2 with normalized probabilities from [1, k] and capacities
in [ρ3

4B,
3
4B].

7. Generate a scenario set S3 with normalized probabilities from [1, k] and capacities
in [ρ1

2B,
1
2B].

8. Add instances (I, S1), (I, S2) and (I, S3) to the pool of generated instances.

9. If we need more instances, restart.

6.3. Experiments

6.3.1. Choice of Parameters

Since we want to find the techniques that generate the hardest instances in general, we
will choose a fixed value for R, the number of items and the number of scenarios. Since
we want to create instances that can be solved rather fast, but are representative, we fix
R to 30. We choose k = 3 and ρ = 0.5, so our scenarios will have enough diversity, but
will probably be relevant in most cases.

6.3.2. Hardware and Software

All experiments were run on an Intel R© CoreTM2 Duo 6400 @ 2.13 GHz, with 1GB of
RAM, running Windows R© XP Professional 64 bit, version 5.2, Build 3790, Service Pack
2. The algorithms where implemented in the Java Programming Language. The Java
runtime used was the JavaTMSE Runtime Environment, build 1.6.0 17-b04, 32 bit edition.
The SDK and compiler version used was 1.6.0 12. Linear Programs where solved using
the ILOG R© CPLEX 11.0 optimizer, 32 bit.

6.3.3. First Phase Experiments

For the first phase, we will generate a lot of different instances. Since we want to
determine if certain classes are indeed more difficult for the algorithms we want to test,
we need to choose some algorithms. Some preliminary testing has shown that the separate
recovery Branch and Price algorithm works well in many cases where we branch on the
item with the smallest value that is fractional in the current solution, including that
item in the first case and excluding it in the second. Since we will also want to try local
search algorithms, we will use the Branch and Price next to a Hill Climbing algorithm
that does 10 random restarts.

We will use the following techniques to generate our instances of 20 items and 5 scenarios:
Uncorrelated, Weakly correlated, Strongly correlated, Inverse strongly correlated, Almost
strongly correlated, Subset sum, span(2, 10) from a weakly correlated set, span(2, 10) from

78



a strongly correlated set, span(2, 10) from an uncorrelated set, multiple strongly correlated
mstr(9, 6, 6), profit ceiling pceil(3) and circle(2

3) instances, giving 12 types in total.
We will generate 500 item-sets for each instance class. Since our proposed method

to generate scenarios will generate 3 instances for each item-set, this means our total
number of instances will be 18000.

Instance avg. ms max ms max nodes max depth

Uncorrelated 17 781 129 8
Subset Sum 36 2,125 33 17
Uncorrelated span(2, 10) 21 937 19 10
Weakly Correlated 45 2,297 1,025 11
Weakly Correlated span(2, 10) 18 922 19 10
Strongly Correlated 147 3,188 31 16
Almost Strongly Correlated 334 204,625 31 15
Inverse Strongly Correlated 357 341,406 301 13
Strongly Correlated span(2, 10) 19 1,547 29 15
pceil(3) 38 1,141 65 10
mstr(9, 6, 6) 96 4,984 67 10
circle(2

3) 100 5,219 1,025 11

Table 3: First Phase - Branch and Price results

Instance avg. ms max ms avg. c
c∗ min c

c∗
Uncorrelated 95 1,344 1 0.97
Subset Sum 55 234 1 1
Uncorrelated span(2, 10) 35 297 1 0.88
Weakly Correlated 112 750 1 0.97
Weakly Correlated span(2, 10) 34 266 1 0.98
Strongly Correlated 63 454 1 0.97
Almost Strongly Correlated 63 313 1 0.97
Inverse Strongly Correlated 119 657 1 0.94
Strongly Correlated span(2, 10) 33 360 1 0.98
pceil(3) 78 547 1 0.99
mstr(9, 6, 6) 209 1,438 0.99 0.93
circle(2

3) 238 1,859 0.99 0.9

Table 4: First Phase - HillClimbing results

The experiment took 2 hours and 45 minutes. Note that for each instance, the Java
Virtual Machine was restarted, to make sure each program could start with a clean state
of the memory. If we analyze the Branch and Price results in Table 3, we can see that
the variations of the strongly correlated instances take the most time, both in terms
of the maximum and average runtime. The inverse strongly correlated instances win
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in terms of the greatest average runtime and the largest maximum runtime, while the
almost strongly correlated instances take a lot of time as well. If we take a look at the
Hillclimbing results in Table 4, we can see that the circle instances have the largest
maximum runtime and the greatest average runtime. It is also interesting to see that
the average deviation is almost 1 for all instances, but when we consider the minimum
deviation, the uncorrelated span(3, 10) instances perform the worst.

6.3.4. Second Phase Experiments

Since the almost strongly correlated instances and the inverse strongly correlated instances
took the most time to solve with the Branch and Price algorithm, we will consider these
instances for the second phase. The circle instances and the uncorrelated span(3, 10)
instances performed the worst with the Hillclimbing algorithm, with respect to running
time and worst c

c∗ . Because of its classic status and its relation to the decision variant
of the knapsack problem, we will also consider the subset sum instances in the second
phase experiments.

This means we will consider only 5 instance classes in the second phase: the almost
strongly correlated instances, the inverse strongly correlated instances, the circle instances,
the spanned uncorrelated instances and the subset sum instances.

The goal of the second phase is to find out what algorithms are fast enough to do a
large scale experiment with larger instances. We would also like to get some information
about the global performance of the algorithms developed in the previous sections.

We have 12 different methods for branching in our Branch-and-Price algorithms. Any
combination of smallest/greatest with ratio/value/size gives us 6 ways to choose an item
from the set of fractional items. Since we may first include the item as well as exclude
the item in our branches, we get 12 branching strategies in total. Since we have two
Branch-and-Price algorithms, this leaves us with 24 Branch-and-Price strategies. To keep
things fast enough, we use Hillclimbing (with 10 restarts) to find a starting solution for
the Branch-and-Price.

The Branch-and-Bound algorithm also has the possibility to use the same branching
strategies, which also gives us 12 strategies. Branch-and-Bound branches on the inclusion
or exclusion of items in the initial item-set and uses Dynamic Programming (based on
the basic approach presented in Section 5.2.1) to calculate the best recovery strategy in
each node. We also use the LP-relaxation from Section 5.4.3 and a relaxation on the
recovery constraint from Section 5.4.6 as upper-bounds.

The Exact Dynamic Programming algorithm from Section 5.3.5has no configuration
options, but will also be used, since it is the only non-branching alternative to the other
exact algorithms.

Iterative Dynamic Programming, the first approximation algorithm, is based on the
technique discussed in Section 5.4.1 and uses a scheme comparable to the regular DP
for knapsack, but calculates the optimal recovery in each state. Section 5.4.1 contains
a counter-example that shows that this method is not guaranteed to give an optimal
solution. Therefore, it may find different solutions depending on the ordering of the
items and we may find better solutions if we consider each item more than once. We
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may select different strategies to order and reorder the items after each iteration (during
an iteration, each item is considered once). We will use strategies that sort the items
according to size, profit and ratio (where the order is reversed after each iteration) and
a configuration that shuffles the items randomly after each iteration. This gives us 4
different configurations.

Hillclimbing can be configured by choosing the number of random restarts and whether
swap-operations should be considered or not. We will use 10 and 100 random restarts in
combination with and without swaps. This also gives us 4 different configurations.

Simulated Annealing can be configured by selecting a cooling scheme, which can be
either linear or exponential and its cooling parameter, the number of steps that should be
done before cooling down, the starting energy, the ending energy, the maximum number
of iterations without improvement and the probability to use hillclimbing to go to the
nearest local optimum. We will fix the initial energy to 1, the minimum energy to 0.01
and the number of steps to take before cooling to 10. We will try the linear cooling
scheme with parameters 0.1, 0.01 and 0.001, all with the local optimum step disable,
except for the 0.01 parameter, which will also be tried with the local optimum step
disabled, as well as giving it a probability of 0.01. We will use the exponential cooling
scheme with the parameters 0.9, 0.99 and 0.999, where the local optimum step is disabled,
except for the parameter 0.99 which will also be tried with the probability of 0.01 for the
local optimum step. This gives us 8 configurations.

Tabu Search can be configured by selecting the length of the tabu-list, the number
of steps that can be taken since the last improvement before ending the algorithm and
whether or not swaps-operations should be considered. We will fix the number of steps
without improvement to two times the number of items in the problem. With swapping
enabled, all items can be swapped for each other in this number of steps. For the length
of the tabu-list, we will try 3, 10 and 30. We will also try them with both swaps enabled
and disabled, giving us a total of 6 configurations.

In summary, we will try the following algorithms:

• Branch and Price on the separate recovery decomposition* (12 configurations)

• Branch and Price on the combined recovery decomposition* (12 configurations)

• Branch and Bound* (12 configurations)

• Exact Dynamic Programming*

• Iterative Dynamic Programming (4 configurations)

• Hillclimbing (4 configurations)

• Simulated Annealing (8 configurations)

• Tabu Search (6 configurations)

The algorithms marked with a * are the exact algorithms (27 in total) , which give the
value of the optimal solution, while the other only give an approximation (22 in total).
The total number of configurations is 59.
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Since the number of algorithm configurations is very large, we need an instance
collection that has growing parameters to get an idea about the relation between input
size and running time (both the number of items and the number of scenarios will need
to grow). Also, we can expect certain algorithms to be very slow so we want very small
instances as well as instances of a moderate size which large enough to get an idea about
the behavior of the running times and deviations compared to the instance size. To
accomplish this we will limit the number of items and the number of scenarios in our
instances to rather small sets. The set of possible numbers of items for our instances is
{5, 10, 15, 25}. The number of scenarios will be selected from {2, 4, 6, 8}. However, we
exclude the combinations where the number of scenarios exceeds the number of items, i.e.
combinations with 5 items and 6 or 8 scenarios. For each combination we will generate
20 item-sets and for each item-set we will generate three sets of scenarios, so 60 instances
for each combination. Since we have 14 combinations and 5 instance types, this gives us
4300 instances for each algorithm, so we will have 253700 runs in total. We will limit the
running time for each experiment to 3000 milliseconds, so the amount of time in which
we can do our experiments will be acceptable.

The total experimentation time was 40 hours and 36 minutes. All results were processed
into Tables 5 and 6. The first column tells us how many runs failed. A failed run means
that the algorithm ran longer than 3000 milliseconds. Such experiments are ignored in the
rest of the table. The next columns give us the average runtime in ms and the maximum
runtime in ms. The third column give us the average deviation from the optimal value
c
c∗ and the minimum deviation from the optimal value c

c∗ over all the solutions found by
the algorithm. Note that the deviation is not relevant for the exact algorithms, since it
should always be 1. Also note that we can only calculate the deviation if we have an
exact solution. If no exact algorithm finds a solution, we cannot calculate the deviation
for that particular instance.

The last two columns give a crude estimate on the average growth of the maximum
runtime when additional items or scenarios are added to the instances. We begin with
our item-set sizes N = {5, 10, 15, 25} and our scenario sizes K = {2, 4, 6, 8}. Let us
define a function t(n, k) which gives the average running time in ms for n items and

k scenarios. Now let us define a function f(n) =
∑

k∈K
t(n,k)
|K| that gives the average

number of milliseconds t to find a solution for an item-set of size n. Likewise, we
define g(k) =

∑
n∈N

t(n,k)
|N | for the number of scenarios. We calculate the average of the

derivatives of these functions to get an idea about the behaviors of the running time of
these algorithms.

When we consider the average running times, we can see that the Separate Phase
Branch and Price, the Iterative Dynamic Programming and the Hillclimbing algorithms
perform well, while their number of failures is also acceptable. The Combined Phases
Branch-and-Price algorithms have a very large number of failures, because the large
instances take too much time to solve. This holds even more for the Exact Dynamic
Programming, which could be expected due to its exponential growth in terms of the
number of scenarios. While the Simulated Annealing and Tabusearch algorithms have a
good performance on average, considering their deviation, they can’t beat the Hillclimbing
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Technique Failed avg. max avg. max avg. avg.
(of 4300) ms ms nodes nodes f ′ g′

Combined Phases Branch-and-Price
(0,1)-branching greatest ratio 1,400 425 2,953 1.13 17 47 275
(0,1)-branching greatest size 1,408 410 2,969 1.11 13 46 292

(0,1)-branching greatest value 1,416 402 2,969 1.12 17 46 290
(0,1)-branching smallest ratio 1,404 404 2,937 1.12 17 46 286
(0,1)-branching smallest size 1,413 407 2,969 1.11 13 44 280

(0,1)-branching smallest value 1,407 406 2,969 1.12 13 45 285
(1,0)-branching greatest ratio 1,407 417 2,969 1.12 17 45 286
(1,0)-branching greatest size 1,401 427 2,985 1.1 13 46 300

(1,0)-branching greatest value 1,406 421 2,984 1.11 17 46 294
(1,0)-branching smallest ratio 1,417 412 2,969 1.12 13 45 290
(1,0)-branching smallest size 1,395 434 2,938 1.13 13 47 305

(1,0)-branching smallest value 1,405 428 2,953 1.11 13 48 308
Separate Phase Branch-and-Price

(0,1)-branching greatest ratio 190 101 2,938 2.97 261 4 29
(0,1)-branching greatest size 167 100 2,860 3.16 435 4 26

(0,1)-branching greatest value 167 95 2,844 3.16 521 4 28
(0,1)-branching smallest ratio 236 99 2,906 4.6 537 4 32
(0,1)-branching smallest size 225 108 2,937 4.35 1,019 5 32

(0,1)-branching smallest value 242 103 2,860 4.33 807 5 34
(1,0)-branching greatest ratio 128 107 2,563 3.27 122 5 31
(1,0)-branching greatest size 137 97 2,937 2.85 39 5 32

(1,0)-branching greatest value 122 101 2,906 3.33 831 5 30
(1,0)-branching smallest ratio 146 88 2,750 2.67 255 5 29
(1,0)-branching smallest size 135 90 2,828 2.93 257 4 26

(1,0)-branching smallest value 121 94 2,844 2.85 67 4 27
Branch and Bound

(0,1)-branching greatest ratio 653 191 2,984 3,327 71,491 29 18
(0,1)-branching greatest size 792 215 2,922 5,104 160,676 33 46

(0,1)-branching greatest value 781 201 2,938 4,399 137,477 30 36
(0,1)-branching smallest ratio 713 207 2,984 3,791 156,121 36 4
(0,1)-branching smallest size 566 192 2,984 2,374 54,803 30 2

(0,1)-branching smallest value 595 211 2,985 2,949 129,550 35 -3
(1,0)-branching greatest ratio 748 148 2,984 2,994 37,669 18 1
(1,0)-branching greatest size 520 156 2,921 3,019 43,595 17 4

(1,0)-branching greatest value 547 166 2,906 3,308 78,057 20 -12
(1,0)-branching smallest ratio 190 111 2,906 1,281 33,321 11 7
(1,0)-branching smallest size 359 121 2,984 1,586 80,778 15 -0.22

(1,0)-branching smallest value 351 102 2,984 1,164 71,581 12 6
Exact Dynamic Programming 2,840 347 2,984 - - 87 159

Table 5: Second Phase Experiments - Exact Algorithms
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Technique Failed avg. max avg. min avg. avg.
(of 4300) ms ms c

c∗
c
c∗ f ′ g′

Hillclimbing
10 random restarts 0 2 32 0.98 0.66 0.11 0.33

10 random restarts with swapping 0 55 1,391 0.99 0.81 5 10
100 random restarts 0 17 422 0.99 0.85 1 3

100 random restarts with swapping 222 337 2,985 1 0.88 33 70
Iterative Dynamic Programming

Shuffle order 0 96 2,172 1 0.98 7 16
Order by ratio 0 82 2,531 1 0.99 8 20
Order by size 0 88 2,531 1 0.99 7 17

Order by value 0 86 2,266 1 0.99 7 16
Simulated Annealing

Exponential cooling, factor 0.999 1,169 968 2,984 0.94 0 78 163
Exponential cooling, factor 0.99 35 302 2,969 0.88 0 24 59

Exponential cooling, factor 0.99 and Hillclimbing 81 319 2,968 0.98 0 25 63
Exponential cooling, factor 0.9 0 28 359 0.75 0 2 5
Linear cooling, cooldown 0.001 178 495 2,985 0.92 0 41 91
Linear cooling, cooldown 0.01 0 63 1,031 0.84 0 5 12

Linear cooling, cooldown 0.01 and Hillclimbing 0 109 2,657 0.98 0 8 22
Linear cooling, cooldown 0.1 0 3 47 0.61 0 0.14 0.45

Tabusearch
Tabulist length 3 0 8 407 0.99 0.64 0.54 1
Tabulist length 10 0 6 485 0.99 0.64 0.42 1
Tabulist length 30 0 6 375 0.99 0.64 0.42 0.82

Tabulist length 3 with swapping 43 203 2,985 0.99 0.81 15 60
Tabulist length 10 with swapping 51 217 2,968 0.99 0.81 17 62
Tabulist length 30 with swapping 67 233 2,985 1 0.85 19 66

Table 6: Second Phase Experiments - Approximation Algorithms
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and Iterative Dynamic Programming algorithms in terms of worst case performance,
while being comparable in terms of the running time. The Branch and Bound approach
gives surprisingly fast results and, while having more failures than the Separate Phase
Branch-and-Price algorithm, is the second best exact algorithm. However, since adding
items adds additional depth to the tree, we may expect an increasing running time when
we additional items to our instances.

It is safe to conclude that Separate Phase Branch-and-Price, Hillclimbing and Iterative
Dynamic Programming are the techniques to consider during the third phase. In case of
the Iterative Dynamic Programming we will work with order-by-value. For Hillclimbing
we will take the 100 random restarts, since it has a good value for the minimum deviation
and never failed. For the Separate Phase Branch and Price technique we will work with
the (1-0)-branching largest ratio principle, since it had the lowest maximum running time
compared to other potential choices.

6.3.5. Third Phase Experiments

During the third phase, we will work with Separate Phase Branch-and-Price with (1-0)-
branching on the item with the largest ratio, Hillclimbing with 100 random restarts and
Iterative Dynamic Programming with order by value. The goal of the third phase is to
get more precise information about the growth rate of the running time in relation to
the number of scenarios and the number of items. For our instances, we will use the
same types we used during the second phase, which gives us five instance classes. For
our number of items, we will choose from {50, 75, 100}, while we will choose the number
of scenarios from {2, 3, 4, 10, 20}. We use the same 5 different instance classes for our
item-sets. For each combination of number of scenarios, items and each instance class, we
generate 20 item-sets. This yields 3× 5× 5× 20 = 1500 item-sets in total. We generate
3 sets of scenarios for each item-set, which gives us 4.500 instances in total. We will limit
the running time of the algorithms to 4 minutes for each of these instances.

Analyzing the results from Tables 7, 8 and 9 we can make a few observations. When
we take a look at the Branch and Price algorithm, we can see that the running time
seems to increase reasonably when we raise the number of scenarios. While the number
of failures is greater than the number of failures in case of the Hillclimbing algorithm, we
have a guarantee for optimality. Additionally, the Hillclimbing algorithms needs a lot
additional running time for each additional scenario or item added to the problem.

The average running time of the Iterative DP is dominated by both the Branch-and-
Price and the Hillclimber. However, the number of failures of the Iterative DP dominates
the number of failures of the Branch-and-Price, while the deviation from the optimal
solution dominates the deviation of the Hillclimber. As expected, the average running
time scales very predictable in the size of the input. It showed no deviation from the
optimal solution, which suggests that the counterexample which showed the algorithm is
not exact either does not occur often in random instances, or shows that these instances
are difficult to the Branch and Price algorithm as well.

Now let us take a better look at the Branch-and-Price algorithm. In Table 10 we
consider the Branch-and-Price results for the largest scenario sets. We see that there is a
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Items Scenarios Failed avg. ms max ms avg. nodes max nodes
(of 300)

50 2 2 686 56,312 1.56 68
50 3 12 2,724 53,454 1.7 25
50 4 46 3,799 58,688 2.6 35
50 10 125 3,295 53,483 2.29 35
50 20 144 1,473 38,766 1.4 17

75 2 45 1,702 42,984 1.12 7
75 3 111 2,365 43,485 1.59 43
75 4 123 1,648 33,515 1.54 41
75 10 169 712 29,454 1.18 17
75 20 177 155 3,203 1 1

100 2 114 1,695 47,531 1.05 5
100 3 173 703 24,781 1.16 11
100 4 176 964 46,172 2.03 59
100 10 213 468 34,547 1.39 25
100 20 210 103 2,703 1.13 13

Table 7: Third Phase - Seperate Phase Branch and Price (Totals)

Items Scenarios Failed avg. ms max ms avg. c
c∗ min c

c∗

(of 300)

50 2 0 104 969 0.98 0.68
50 3 0 173 1,204 0.98 0.84
50 4 0 181 1,203 0.98 0.83
50 10 0 268 1,407 1 0.94
50 20 0 309 1,515 1 0.84

75 2 0 339 10,906 0.98 0.75
75 3 0 538 12,484 0.99 0.78
75 4 0 596 9,687 0.99 0.7
75 10 0 1,022 11,953 1 0.77
75 20 0 1,450 12,984 1 0.74

100 2 0 887 19,656 0.98 0.66
100 3 0 1,257 25,578 1 0.86
100 4 0 1,783 32,625 1 0.8
100 10 0 3,546 34,703 1 0.8
100 20 0 4,546 37,312 1 0.94

Table 8: Third Phase - Hillclimbing 100 Restarts (Totals)
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Items Scenarios Failed avg. ms max ms avg. c
c∗ min c

c∗

(of 300)

50 2 0 1,729 17,062 1 1
50 3 2 2,881 31,375 1 1
50 4 2 3,082 46,297 1 1
50 10 8 4,543 34,218 1 1
50 20 18 4,980 37,875 1 1

75 2 15 4,666 46,642 1 1
75 3 32 6,958 52,062 1 1
75 4 45 8,268 48,844 1 1
75 10 75 10,545 44,359 1 1
75 20 82 12,155 52,048 1 1

100 2 45 9,468 58,515 1 1
100 3 65 13,264 59,719 1 1
100 4 90 13,651 58,390 1 1
100 10 127 18,686 58,985 1 1
100 20 141 17,952 58,875 1 1

Table 9: Third Phase - Iterative DP (Totals)

Instance Items Failed avg. ms max ms avg. nodes max nodes
class (of 60)

50 3 36 78 1 1
Subset Sum 75 0 90 2,062 1 1

100 19 78 156 1 1

Uncorrelated 50 3 434 22,453 1.07 5
span(2, 10) 75 15 91 1,860 1 1

100 13 67 375 1 1

Almost 50 54 17,604 34,781 7.67 17
Strongly Correlated 75 56 145 204 1 1

100 58 1,453 2,703 7 13

Inverse 50 44 4,864 38,766 1.25 5
Strongly Correlated 75 47 673 3,203 1 1

100 60 - - - -

50 40 981 11,063 1.7 7
circle(2

3) 75 59 203 203 1 1
100 60 - - - -

Table 10: Third Phase - Seperate Branch-and-Price (Details for 20 scenarios)
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Algorithm Items Failed avg. ms max ms avg. nodes max nodes
(of 60)

50 3 36 78 1 1
Branch and Price 75 0 90 2,062 1 1

100 19 78 156 1 1

50 0 185 391 1 1
Hillclimbing 75 0 418 797 1 1

100 0 739 1,469 1 1

50 0 2,426 4,937 1 1
Iterative DP 75 0 8,098 13,781 1 1

100 0 19,152 32,547 1 1

Table 11: Third Phase - Subset Sum Instances (Details for 20 scenarios)

large difference between the different instance classes: Subset Sum seems to be much
easier than the other instance classes for the Branch-and-Price, since it often has the best
running time compared to the Iterative DP and Hillclimbing, based on the information
in Table 11.

To conclude, it is unclear to state which algorithm is the best. In case of subset sum
instances, the Branch-and-Price algorithm seems a very good choice. If we have other
instance types, the Branch-and-Price algorithm may give good results, but it may take
too much time. If it takes too much time, we may consider both the Hillclimber or the
Iterative DP, which seem to have a trade-off between running time and deviation from
the optimal solution value.
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7. Discussion

7.1. Decomposition Framework

In Sections 3.2 and 3.3 the ideas behind the Separate Recovery Decomposition and the
Combined Recovery Decomposition for Recoverable Robust Problems were presented.
The idea is to decompose these extended problems for multiple scenarios into multiple
problems for a single scenario, since adapting algorithms for original problems to consider
a single scenario is usually easier than adapting such an algorithm to consider all scenarios.
The Separate Recovery Decomposition decomposes the problem into a separate problem
for finding an initial solution and separate problems for finding a recovery solution for
each scenario, but assumes it is possible to express the constraints on the recovery using
linear constraints. The Combined Recovery Decomposition decomposes the problem into
separate problems for finding both an initial and a recovery solution for a single scenario,
considering the recovery constraints inside these problems instead of expressing them as
linear constraints.

These decompositions are tried on some example problems. We examine the knapsack
problem most thoroughly: in Section 4.1.1 we discuss the formal application of the
decompositions to the problem. Additionally, we explore variants of the problem and
techniques to solve these variants in Chapter 5. Also, computational experiments are
conducted in Chapter 6.

The decomposition is also applied to the Weighted Independent Set problem. In Section
4.2 we present the result of applying both decompositions to an extended variant of the
Weighted Independent Set problem. We also show how the combined problem derived
from the combined recovery decomposition can be transformed into a single independent
set problem, although at the cost of expanding the size of the problem instance by a
constant factor. We also explore an extension of the shortest path problem and the much
simpler classroom problem in Sections 4.3 and 4.1 and derive the combined recovery
decomposition for these problems.

In all these cases, it is possible to derive pricing problems that can be reduced to the
original problem in some form and for which we can apply original algorithms. This gives
empirical evidence to support the idea that the framework is indeed capable to reduce
recoverable robustness problems into multiple original problems that can be solved using
specialized algorithms.

A potential drawback of the framework is the notion that possible similarities between
the scenarios are ignored. It may be the case that this leads to some redundant work,
when solving the pricing problems.

When we applied the Danztig-Wolfe decomposition in Section 3.4, we assumed all
subproblems have a bounded region. If we want to consider unbounded problems as well,
we will need to take extreme directions into account, which will yield a slightly different
deriviation.
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7.2. Knapsack Problems with Robustness

In Section 5.3.1 we introduced many recoverable robustness variants of the Knapsack
Problem, using a three segment notation. Examples are the RKP-S, which limits the
recovery to swapping, the RKP-RG which limits recovery to a greedy rule, the F-KP-RC
which limits the recovery to removing a limited number of items and demands feasibility
and RKP-R, which limits recovery to only allowing the removal of items.

Some of the discussed problems can be solved using a pseudo-polynomial Dynamic
Program. This implies these variants are weakly NP-hard and are thus in the same
complexity class as the regular Knapsack Problem. However, for the RKP-R, no pseudo-
polynomial algorithm could be found and regular reductions from 3-partition fail (as
shown in Section C.4), so the complexity class of this problem is still uncertain. These
RKP-S with a bounded number of swaps seems also hard.

It is difficult to observe a pattern in the complexity of the different variants - where
the RPK-RG can be solved using a technique that takes an equal amount of time as the
regular KP, the RKP-S increases the amount of time required to solve the problem while
remaining weakly NP-hard. Putting a bound on the maximum number of swaps seems
to make the problem harder from an algorithm design perspective. Removing items
without further restrictions also seems to be a hard problem, while putting a restriction
on maximum number of items to be able to remove and simplifying the objective by
demanding only feasible recovery solutions and optimizing the initial solution, makes the
problem easier again, since a pseudo polynomial time algorithm exists. The structure of
the complexity hierarchy of these robust knapsack variants seems to be counter-intuitive.
It is an interesting, but difficult question what causes these varying difficulties for the
different problems.

The smaller instances of RKP-R are solvable in practice using either the decomposition
framework or an iterative improvement technique. Additionally, when we consider Subset
Sum instances, the decomposition framework has the advantage. The question remains
whether this behavior also occurs when we apply these decomposition techniques to other
problems and if the process can be refined (for example by using better branching rules
or other ideas).

7.3. Experiments

In Chapter 6, we presented three distinct stages of experimentation. During the first stage
we consider different problem instances for the regular knapsack problem and try to find
hard problems for the extended RKP-R. During the second stage, we considered many
different algorithms to solve these hard instances and tried to find the best algorithms.
During the third stage, we tried the best algorithms on larger instances to get some
insight into the amount of time it takes to solve these problems.

At the end of the experiments, the random restart Hillclimbing and a branch-and-
price algorithm based on the separate recovery decomposition show good results, while
the dynamic programming techniques takes a lot of time when the number of items or
scenarios is increased. This shows that the decomposition technique is not only interesting
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from a theoretical point of view, but also has some practical significance.

7.4. Practical Implications

While the separate phase decomposition yields some practical results for the RKP-R,
other robust knapsack problems could be solved using specific dynamic programs. In
general, using such a specific algorithm is preferable in most cases, but in our case it was
difficult to find an efficient and exact algorithm for the RKP-R. This gives some insight
into the field of application of the framework: it can be used when the complexity of the
robustness problem is too great to manage.

With regard to solving problems, the separate recovery decomposition has proven
itself with regard to the robust knapsack problem. However, the combined recovery
decomposition still has to prove itself, since it was very slow in case of the robust knapsack
problems. However, the algorithm used to solve the pricing problem was quite slow, due
to a running time quadratic in the capacity. In this regard, the demand robust shortest
path problem seems a likely candidate for experimentation, because it derived positive
weight shortest path problems for pricing, while the RKP-R derived knapsack problems
for pricing with two scenarios that take significantly more time to solve than original
knapsack problems with the same number of items and equal capacity. An advantage of
the combined recovery decomposition is that it does not depend on the expressibility of
the recovery constraints using linear equations.

7.5. Future Research

While the experiments on the knapsack show some promising results, a lot more can
be done. More experimentation with these techniques on other problems seems like an
interesting thing to do - especially the demand robust shortest path problem seems like
a good candidate for further experimentation. We can also consider other options, like
special instances of the weighted independent set problem - a variant of this problem
in trees is also a candidate, since there is a polynomial time algorithm for these special
instances. There is also some room to consider different variants of the knapsack problem
- the RKP-S with a bounded number of swaps for recovery seems like a good candidate
to explore. Experimentation using the results about the Lagrangian recovery relaxation
from Section 5.4.6 and the surrogate relaxation from Section 5.4.5 is also an option
regarding the Robust Knapsack Problems.

The question whether the RKP-R is weakly or strongly NP-hard remains. While the
algorithm from Section 5.3.5 implies that the RKP-R is weakly NP-hard for a fixed
number of scenarios, the question whether adding more scenarios to a problem instance
makes it significantly more difficult is still open. We also spoke about the option of adding
additional scenarios on the fly in case of minimax objectives, in Section 3.6. It might be
interesting to develop some sort of sensitivity analysis method, that tells us what kind of
scenarios are covered by the current solution (and thus can be added without disturbing
our initial solution). Such considerations about the complexity or the sensitivity of some
initial solution can be applied to both the knapsack variants explored in Chapter 5, but
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also with respect to recoverable robustness problems in general. It is also interesting to
look at ways to reduce the amount of redundant work the pricing problems perform on
similar parts of the problem. Preprocessing methods that take this into account would
be a valuable subject to research. The sections about core-methods for the Knapsack
Problem in [KPP04] might be considered.

Also, the experimental results from Tables 5 and 6 show some promise for the usage of
local search techniques that apply an exact recovery algorithm on the generated initial
solutions. One can consider refining these experiments to give more guarantees on finding
a good solution, or consider such techniques for different recoverable robustness problems.

The combined recovery decomposition deserves some attention as well. Its application
on the demand robust shortest path problem gives nice theoretical results and seems like
a good test-case for this approach. Additionally, it may be possible to move the costs of
the initial solution into the pricing problems as well (by scaling them by a factor 1

|S| and
moving the costs to the wspq variables in the master problem transformation from Section
3.3), which may make applications to problems with non-linear cost functions possible as
well.

92



8. Conclusion

When we consider our work from a theoretical point of view, we get nice decompositions
when we apply them to a couple of classic problems. Robustness variants of the knapsack
problem, the shortest path problem and the weighted independent set problem are all
reduced to their original form in the pricing problems derived by the decomposition
techniques. This allows us to apply well known algorithms to solve the recoverable
robustness variations of these problems.

From a practical point of view, we have also shown that the separate recovery de-
composition can be used to solve some problems of moderate size, containing 100 items
and having 20 scenarios, in a matter of seconds. While there are also some instances of
moderate size that cannot be solved in 4 minutes, the used techniques can possibly be
refined, or used as an approximation method to find good instead of optimal solutions.

Our work paves the way for multiple paths of future research. The decomposition
framework can be applied to other problems, producing interesting opportunities for
further experimentation and analysis. Additionally, the multiple variants of the robust
knapsack problem are interesting problems to study in itself, either because of the
questions about the complexity of these problems, or simply because the problems
provide challenges in an algorithmic sense.
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[BKK11] Christina Büsing, Arie Koster, and Manuel Kutschka. Recoverable robust
knapsacks: the discrete scenario case. Optimization Letters, pages 1–14,
2011. 10.1007/s11590-011-0307-1.

[BL97] John R. Birge and François Louveaux. Introduction to Stochastic Program-
ming. Springer Series in Operations Research and Financial Engineering.
Springer, July 1997.

[BS04] D. Bertsimas and M. Sim. The price of robustness. Operations research,
pages 35–53, 2004.

[BTGN09] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Prince-
ton University Press, 2009.

[BTvDvL08] Hans Bodlaender, Richard Tan, Thomas van Dijk, and Jan van Leeuwen.
Integer maximum flow in wireless sensor networks with energy constraint.
In Joachim Gudmundsson, editor, Algorithm Theory - SWAT 2008, volume
5124 of Lecture Notes in Computer Science, pages 102–113. Springer Berlin
/ Heidelberg, 2008.

[CKPP98] Alberto Caprara, Hans Kellerer, Ulrich Pferschy, and David Pisinger. Ap-
proximation algorithms for knapsack problems with cardinality constraints.
European Journal of Operational Research, 123:2000, 1998.

[Coo98] W. Cook. Combinatorial optimization. Wiley-Interscience series in discrete
mathematics and optimization. Wiley, 1998.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education, 2nd
edition, 2001.

94



[DGRS05] Kedar Dhamdhere, Vineet Goyal, R. Ravi, and Mohit Singh. How to pay,
come what may: Approximation algorithms for demand-robust covering
problems. In Proceedings of the 46th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS ’05, pages 367–378, Washington, DC,
USA, 2005. IEEE Computer Society.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959. 10.1007/BF01386390.

[dMVDH99] Olivier du Merle, Daniel Villeneuve, Jacques Desrosiers, and Pierre Hansen.
Stabilized column generation. Discrete Mathematics, 194(1-3):229 – 237,
1999.

[DW60] George B. Dantzig and Philip Wolfe. Decomposition principle for linear
programs. Operations Research, 8(1):pp. 101–111, 1960.

[Fis81] Marshall L. Fisher. The lagrangian relaxation method for solving integer
programming problems. Management Science, 27(1), 1981.

[GJ78] M. R. Garey and D. S. Johnson. “ strong ” np-completeness results:
Motivation, examples, and implications. J. ACM, 25:499–508, July 1978.

[GL97] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[Glo68] Fred Glover. Surrogate constraints. OPERATIONS RESEARCH, 16(4):741–
749, 1968.

[Gom58] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear
program. Bulletin of the American Mathematical Society, 64(5):275–278,
September 1958.

[JN83] D. S. Johnson and K. A. Niemi. On knapsacks, partitions, and a new
dynamic programming technique for trees. MATHEMATICS OF OPERA-
TIONS RESEARCH, 8(1):1–14, 1983.

[Kar72] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, pages
85–103. Plenum Press, 1972.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[KPP04] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer,
Berlin, Germany, 2004.

[LD60] A. H. Land and A. G. Doig. An automatic method of solving discrete
programming problems. Econometrica, 28(3):pp. 497–520, 1960.

95
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A. Explanation of Techniques Used

A.1. Basic Problem

Many problems from practice have a basic, general form. When we take our repair facility
example, we can see that we have a certain number of choices. In most formal ways
to express a problem, we use variables to model choices. Most models also incorporate
constraints. If we consider the simple form of our repair facility problem, we can make a
yes/no choice for each repair, under the constraint that the amount of time the repairs
we answer with a yes take to execute don’t exceed 168 hours (one week). If we have
binary variables xi such that i is an index on our repairs, and we have constants ai for
the amount of time such a repair takes (in hours) and ci for the profit we gain when we
execute repair i, we can create a simple formulation of the problem in a formal way:

max
∑

i∈I cixi
s.t.

∑
i∈I aixi ≤ 168

This formulation is quite simple to read: the first line presents us with some objective.
In this case it reads: maximize the amount of profit. The second line states the objective
is subject to (s.t.) the major constraint: the amount of time necessary to execute our
repair should not exceed 168 hours (one week). The last line states that our choices are
binary (i.e. yes/no choices).

This formulation is an example of an Integer Linear Programming formulation (in
short: ILP formulation). Many problems can be expressed using such a formulation. In
general such problems have the following general form:

max or ( min ) cx
s.t. Ax ≤ b

x ≥ 0 (or xi ∈ N, or xi ∈ {0, 1},∀i)

Here x is a vector of variables, c is a vector of profits or costs of the variables, A is the
constraint matrix and b is the vector with the right hand sides of the constraint matrix.

Each variable can have its own upper and lower-bound. A variable can also have the
constraint that it needs to be integral, or binary (either be 0 or 1). Using additional
variables we can also create constraints of the form Ax ≥ b and Ax ≤ b.

In many cases it is an option to ignore the integrality constraints on the variables
(thus allowing fractional values). While this generally gives an infeasible solution to the
original problem, it does give a valid upper- or lower-bound on the solution value of the
original problem. Such a upper- or lower-bound can be used to determine the quality of
your current solution (if a solution to a maximization problem is very close the value
of the upper-bound, you know it can’t be improved much more) and to prune the tree
of a branch-and-bound algorithm as good as possible. A solution to an Integer Linear
Program where the integrality constraints are ignored is called the LP-relaxation.
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A.2. Column Generation

The column generation technique is a linear programming technique where not all variables
are considered in the first place, but are added on the fly when they can improve the
current solution. Suppose we have a standard linear programming problem of the form:

max cx

s.t. Ax = b

x ≥ 0

Now suppose we have a lot of variables, while a solution to the problem only has a few
variables set to a value that is not zero.

The simplex algorithm is mainly concerned with jumping between extreme points in
the convex space described by the constraint matrix. Given the system Ax = b, the
Non-Basis matrix N is the sub-matrix of A that has the columns that correspond to the
variables that have value zero in the current solution. The remaining columns from the
matrix A are called the Basis-matrix B. The current extreme point is described by a
inverted Basis-matrix, which the simplex algorithm keeps in memory.

All variables that are not currently in the Basis-matrix have a certain reduced cost.
That cost can be calculated by taking the inverted Basis-matrix B−1 and the elements of
cost vector the cost vector that correspond to the variables currently in the basis, known
as cB. Now if we take the shadow-price vector cBB

−1 and take it’s dot-product with the
column vector Ai of a variable xi that is not currently in the basis, we can calculate the
price we have to pay to make room to bring it into the current Basis. These costs come
from the notion that because of the constraints, when we give a new variable a value
that is non-zero, the values of the other variables will have to change to keep the solution
feasible. If we take the profit the variable generates, ci, and subtract the costs it takes
to make room for the variable, CBB

−1Ai also known as zi, we get the so called reduced
costs ci − zi. If we are maximizing our objective and this value is positive, our solution
is improved if we bring the variable xi into the current basis.

It is clear this trick can be used on variables that we know very well and are explicitly
in the current LP-model. Another option is to begin with a very restricted model that
has only a small amount of variables. Now we can solve that model and use the Basis of
the optimal solution to the restricted problem to find a new variable that improves the
solution if we add it to the restricted model. If we add that variable to the restricted
model, we can use the old solution as a starting point to solve the new restricted model.
This process can be repeated until the point where no variable can improve the solution,
which implies the optimal solution has been found. A possible result is that only a few
of all our variables from the original problem have been added to the restricted problem.
If we had a smart way to find the next best variable to add to the restricted master
problem, this could mean that the optimal solution has been found faster than in the
case where the normal simplex algorithm would have been used.

This smart way to find the next best variable is the most important aspect of the
column generation approach. If all variables are explicitly available but have some
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structure that can be used to build a data structure that allows use to find the next
best variable given the current value of cBB

−1 in sublinear time, there is a considerable
speedup. But if the number of variables is extremely large, it becomes desirable to find a
way to prevent the exhaustive enumeration of all variables.

By using an implicit description of our variables, we can prevent such an exhaustive
enumeration. While it isn’t necessary, such an implicit description often has the form of
another linear program. The solution to such a linear program gives us the next best
variable, along with it’s column in the constraint matrix of the restricted master problem
and it’s costs or profit. In many cases each extreme point from such a linear program
is a potential variable in the master problem. Since the amount of extreme points is
exponential in the size of the program it is clear to see that solving a linear program can
be much faster than enumerating all possibilities.

The general name for the problem of finding a new variable with regard to some implicit
description and the current values of cBB

−1 is called the pricing problem. Because the
values in cBB

−1 are the link between the restricted master problem and the pricing
problem, they are sometimes references by the name shadow prices.

Suppose we have a solution for the master problem. The shadow prices of the current
solution are described by the vector σ. If we solve the pricing problem to find a new
variable xi, it should give us a new column in Ai and the costs of the new variable ci.
If we are maximizing our objective, we should check if the reduced costs, ci − σAi is
positive. If we are minimizing our objective, we should check if it is negative.

During each iteration we should solve both the master and pricing problem. Solving
the master problem each time is necessary to update the dual values, while solving the
pricing problem is necessary because the dual values change. This way, we will increase
the value of the master problem step by step. When no positive solution to the pricing
problem is found, the process terminates. The algorithm is presented in pseudo-code in
Figure 8.

One of the disadvantages of the column generation approach is that it is necessary
to use linear programming without integer variables for the master problem. While
it is possible to use the LP-relaxation to overcome this problem, this might lead to
situations where the optimal solution is fractional (and thus not valid if your problem
is an Integer Linear Problem). In such a case you have to be careful how to solve the
situation. One approach is to solve the problem with your current set of columns as an
integer linear program, hoping that you find a valid solution that has an objective value
that is reasonably close to the objective value of the linear programming relaxation. If
you do this and you are happy with the solution, you can stop. If you take the difference
of the value of the integer solution and the value of the linear programming relaxation,
also called the integrality gap, you have a measure of quality of the current solution. The
smaller the integrality gap, the closer the current solution will be to the optimal solution.

Another approach is to use branch and bound, with the value of the LP-relaxation
as a bound. Depending on the exact problem it can be hard to find a good branching
rule. When branching on a regular LP-relaxation of a Integer Linear Program, you could
choose a variable that has a fractional value in the current solution and branch two times:
one time with it’s upper-bound at the floor of the current value and one time with it’s
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Algorithm 8 Column Generation

Var Problem main
Var Problem pricing
Var Objective obj ← max ( or min )
main.solve()
Var Boolean improve ← True
while improve do

improve ← False
Var Vector σ ← main.getDuals()
pricing.setDuals(σ)
Var Vector Ai ← pricing.getColumn()
Var Num ci ← pricing.getCosts()
pricing.solve()
if (obj = max∧σ ·Ai < ci)∨ (obj = min∧σ ·Ai > ci) then

improve ← True
main.addColumn(Ai, ci)
main.solve()

end if
end while

lower-bound to the ceiling of it’s current value.
With the column generation approach it is much harder to branch on a variable, since

you generate variables all the time. In many cases, branching means adding or altering
constraints, you can also branch on some variable in your pricing problem. When you
alter your constraints, you introduce new dual values that need to be considered by your
pricing problems. When you branch on a variable in your pricing problem, the result
can be that some columns in your current solution become forbidden, which can leave
you with an infeasible master problem. In general branching has an impact on your dual
values that you need to consider. It also implies that it is important to generate new
columns after branching, to make sure your bound remains tight, which is essential for
the bound part of the branch and bound algorithm. This technique, where branch and
bound is combined with column generation is called branch and price.

The major advantage of the column generation approach is the flexibility the pricing
problem gives you. As long as it gives you new columns that improve your current solution,
you can solve the pricing problem with any algorithm you want. This also means that
you could put constraints that are hard to express in a linear fashion into the pricing
problem. It also means that in a lot of situations you can use alternative algorithms, like
shortest-path, network flow, or specialized dynamic programming algorithms. You are
even allowed to use approximation or local search algorithms. You can even go as far as
to use multiple algorithms: use a fast approximation algorithm to generate columns as
long as possible and only switch to a slower exact algorithm when the approximation
algorithm gives no improvement. In that way you still know your final solution to the
master problem is optimal, while you might gain a huge speed boost because the majority
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of your columns get generated by a much faster algorithm.
Column generation gives us the possibility to create decomposition algorithms. Without

column generation it would be pointless to represent each possible sub-solution by a
single variable. With column generation, such representations become meaningful, since
the variables are considered implicitly instead of explicitly.

A.3. Dantzig-Wolfe Decomposition

Now suppose that we have some variable vector x = x1, x2 . . . xn, and a nice partitioning
of those variables into disjoint sets x1, x2 . . . xk, etc. The definition of nice is omitted,
since no fool proof method exists to do this. The rule of thumb is to choose a partitioning
is such a way that the problem is decomposed in nice sub-problems. Suppose that we
have some constraints that are defined on the variables of some disjoint set and have a
few constraints that are defined on variables from different sets. In other words: our
constraint matrix A contains (non-zero) sub-matrices Di and Fi for 1 ≤ i ≤ k and b is
split into sub-vectors bi for 0 ≤ i ≤ k, such that we have the following structure:

D1x
1 +D2x

2 . . . +Dkx
k b0

F1x
1 +0 . . . +0 b1(

Ax = 0 +F2x
2 . . . +0

)
=

(
b2 = b

)
...

...
. . . +0

...
0 +0 +0 +Fkx

k bk

Now consider the n-dimensional space described by the variables in x and the hyper-
planes trough this space described by the matrix A. Now consider the di-dimensional
spaces described by each variable set xi for 1 ≤ i ≤ k, such that di = |xi|. A point in
such a di-dimensional space will project to an affine subspace in the space described by
x. If we take a point for each space described by an xi set and project all these points
to subspaces in our n-dimensional space, these subspaces will intersect in a single point.
Thus, a point in the n-dimensional space can be described by a point in each of the
di-dimensional spaces in our partitioning of x.

Example Suppose we have three dimensional space, with variables x, y and z. In a
three dimensional space, both a ray and a plane are possible subspaces. Suppose we
partition these variables into two sets: {x, y} and {z}. Suppose we pick a single point in
the two dimensional space described by x and y. If we project this point onto our three
dimensional space, we get a single ray that is parallel to the z-axis. Now suppose we also
choose a single point in the one dimensional space described by z. If we project such
a point onto our three dimensional space, we get a plane that is parallel to the plane
described by both the x and y axes. Since the plane and the ray are not parallel to each
other (the plane is not parallel to the z, while the ray is), there must be a single point
where they intersect. Thus, a point from {x, y} and a point in {z} describe a point in
{x, y, z} by intersection.
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This implies that each extreme point of the system Ax = b can be described by a
combination of points from each xk space. As a matter of fact, the theory of the Dantzig
Wolfe decomposition tells us that each extreme point of the system Ax = b can be
described by combining an extreme point from each Fkx

k = bk system.
The idea is to create a master problem that can have variables yki for each extreme

point in each disjoint set xk, where yki represents the ith extreme point xki . Suppose that
the vector ck is a sub-vector of c, such that ck contains the cost factors for the variables
in xk. Our master problem will have variables yki and look like this:

max or min
∑

k

∑
i(c

kxki )y
k
i

s.t.
∑

k

∑
i(Dkx

k
i )y

k
i = b0 duals: σ0∑

i y
k
i = 1 ∀k dual: σk

yki ≥ 0 ∀k, ∀i

Since the optimal solution will only select a single extreme point from each of our
disjoint sets and since enumerating all points takes up too much time, we will not consider
all extreme points explicitly. By using column generation, we will generate extreme
points that can possibly improve the current solution to a better one. This means we
also need a pricing problem to find a new extreme point for some set xk that improves
the solution.

Since we look for k extreme points, we have k different pricing problems. The reduced
costs of an extreme point from some set k are described by ckxk − (Dkxk)σ0 − σk. Using
our reduced cost formulation, we describe the pricing problem of finding a new extreme
point for a set k with only the variables in xk as:

max or min ckxk − σ0Dkx
k − σk

s.t. Fkx
k = bk

xk ≥ 0

This decomposition technique is applicable to any linear program with a partitioning
of the variables that follows the given structure. It is even possible to use this approach
partially on a program. In that case some of the original variables from the original
problem are left alone in the master problem, while some other variables are replaced by
new variables that represent extreme points, by moving the original variables into the
pricing problem. Such an approach gives a partial Dantzig-Wolfe decomposition.
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B. Implementation of Algorithms

B.1. Data Structures

B.1.1. Items, Scenarios, Problems and the LinkedKnapsack

The most basic data structures used in the algorithms, are the Item, the Scenario
(including the WeightedScenario) and the LinkedKnapsack. The Item is a simple data
structure that holds an integer defining it’s size and a floating point number defining
it’s profit. A basic scenario simply has an integer defining it’s size. The extension, a
WeightedScenario, add an floating point number defining it’s weight.

The Problem class has a collection of Items and a collection of scenarios. It caches a
simple copy of the scenario with the highest value, so this one is easily accessible. Two
helper methods to read and write problems from disk were written, to make life a lot
easier.

The LinkedKnapsack is the easiest implementation of an Knapsack and is very similar
to the well known single linked list. A LinkedKnapsack is simply a node that holds an
Item, it’s size, it’s value and a pointer to a parent LinkedKnapsack. A LinkedKnapsack
k can easily be extended with an Item i: a new LinkedKnapsack k′ is created, it’s parent
becomes k, it’s value becomes valuek + ci, it’s size becomes sizek + ai and it’s Item
becomes i. Note that both k and k′ will remain in memory. When we want to iterate
over all Items in a LinkedKnapsack, we can simply follow the pointers to the parents,
until we find a node without a parent. Note that it is not possible to remove an Item
from a LinkedKnapsack - to do so you will either need to create a new LinkedKnapsack
structure from scratch, or you will need to backtrack to the node where the Item was
added, and extend a new path from it’s parent.

B.1.2. Recovery Knapsack Implementations

Since the value of the LinkedKnapsack is based on a single scenario and only contains a
single set of Items, we need an extension that is capable to represent a solution to our
problem. For this purpose the solution needs to know the exact set of items that will
be used for each scenario, as well as the weighted value of the solution. There are a few
ways to do this and the first implementation was the RecoveryKnapsack.

The RecoveryKnapsack is similar to the LinkedKnapsack. A LinkedKnapsack holds an
item, it’s size, the sum of the values of all the items in it, a recovery vector and a pointer
to a set of scenarios. When an RecoveryKnapsack is extended with an item, the size and
profit of the item are added to the size and the value of the previous knapsack. The
recovery vector is created by using the dynamic programming recurrence for recovery
on the recovery vector of the parent node. When the true value of the LinkedRecovery
knapsack is requested, it can be calculated on the fly by iterating trough the set of
scenarios and subtracting wsrsize−bs from the total value, where rsize−bs is the recovery
value reported by the recovery vector. If k ≤ 0 then rk = 0. Otherwise it will have the
summed value of the cheapest way to remove items of at least size k.

Like the LinkedKnapsack, the RecoveryKnapsack has no operation to remove an
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item. Since the local search algorithms need this functionality, we need to create an
implementation that makes this possible. The first idea is to take the RecoveryKnapsack
and add an algorithm to it that does backtracking trough the tree to the node where the
item was added and extend the parent of that node with all the items visited during the
backtracking process. In the worst case this means that the entire knapsack will have to
be recalculated, in case the root from the tree will be removed, but it gets the job done.
This implementation is called MutableRecoveryKnapsack.

Another implementation which is important for certain algorithms, like the Exact
Dynamic Program, is the PartitionRecoveryKnapsack. Instead of holding a single item-set
and calculating the recovery for each scenario, the PartitionRecoveryKnapsack holds the
explicit set of items for each scenario. When an item is added, you need to specify to
which scenario item-sets the item should be added. Due to the nature of the problem it
is forbidden to add an item to a item-set if it is not also added or already in the item-set
for the main scenario. Removing an item can also be done easily, but removing an item
from the main scenario means it also has to be removed from all sub scenarios. During
the process of updating all item-sets, the sizes and values for each of these sets can be
updated efficiently.

B.1.3. DPHashTable

Since some of the Dynamic Programming algorithms need a large table to memorize the
results and since these tables have an arbitrary number of dimensions, a special data
structure was created to facilitate these needs.

The DPHashTable is a structure of HashMaps. When the table is initialized, the
number of dimensions d must be specified. A store operation is supported, that accepts
an object and exactly d integers. For each integer, it is checked if the current HashMap
contains a key equal to the integer. If not, a new empty HashMap is store with the
integer as a key and the new Hashmap becomes the current Hashmap. If the HashMap
contains the key, the new current Hashmap is retrieved from the current one. If the new
integer is reached, the object is stored in the current hashmap.

The retrieve operation also takes exactly d integers and works in a similar fashion: the
HashMap structure is recursively visited with the integers as keys. If an object is found
at the end, the object is returned.

There is also a getFullSet operation, that goes in recursion trough the entire data
structure and returns all objects stored in the structure.

B.2. Algorithms

B.2.1. Separate Recovery Branch and Price

The Separate Recovery Branch and Price algorithm contains three important parts:
the implementation of the linear programming model of the main model, the dynamic
program that solves the pricing problem and the branching algorithm.

The linear programming implementation is a very straightforward implementation of
the model presented in section 4.1.1 using CPLEX. When a problem is passed to the
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implementation it builds the LP-model in CPLEX, keeping some administration as to
which constraints map to which scenario or item. This is primarily done with HashMaps.
To make the starting solution feasible, the empty knapsack is added as a variable for
each solution.

Since the column generation can be made faster by giving it a good starting solution,
the implementation has also the option to generate a better starting solution. If this
option is enabled, the implementation will call the HillClimbing algorithm 10 times and
add the best solution to the model.

Besides the LP-model we have the Column Generation algorithm. This algorithm
iterates over all scenarios and creates a new item-set based on the shadow prices for the
current solution, only containing the items that still have a positive profit. It also creates
a mapping to be able to translate a solution to a pricing problem to the real problem. It
then calls the basic Dynamic Programming algorithm for the generated item-set and the
bound of the current scenario. If there is a solution, it is added as an column and the
model is solved again. If a complete iteration of all the scenarios fails to generate a new
column, the process of generating columns is stopped.

This is when the branching algorithm needs to do its job. After the columns are
generated, it checks if the solution to the model is worse than the current lower bound:
if it is, we can stop examining the current branch. After this it checks if the current
integer solution for the model is better than the current lower-bound. If it is, the solution
becomes the new lower-bound. The next step is to check if the current solution to the
model is an integer solution: if this is the case, we can stop examining the current branch.

If neither of this is the case, we will have to branch. We have to select an item to branch
on. The implementation can be configured to choose either an item that is fractional in
the current solution or an item that is not yet fixed by branching. In both cases it is
possible we can choose multiple items. We can configure the implementation to choose
the item with either the largest or smallest ratio, size or profit. After the item is selected
we need to branch two times: one time we need to fix the item in the main solution for
the knapsack, branch and unfix the item. The other time we need to forbid the item in
the solution, branch and re-allow the item in the solution. The implementation has a
configuration option which one is done first.

Fixing or forbidding an item can be done by adding a proper constraint to the model.
These steps can be undone by removing the constraint that was added. When a constraint
is added or removed this changes the pricing problem, so this means that the column
generation algorithm must be able to cope with this kind of behavior.

B.2.2. Combined Recovery Branch and Price

The Combined Recovery Branch and Price algorithm has a lot in common with the
Separate Recovery Branch and Price when we consider the implementation. The imple-
mentation of the model is done in the same way and the branching algorithm is also very
similar. The column generation phase has a few additional features in it’s implementation,
the most important is the choice to generate all sister-columns when a new column is
found. Since a column represents the solution for a main knapsack and has the value
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for a single scenario, we can also add columns for the other scenarios by calculating the
proper recovery values for all these scenarios. If we do this, we are sure that the new
column can be selected, since the same solution can be chosen for all the other scenarios,
which at least gives the model a possibility to choose the column with a value larger
than 0. Besides this, stabilized column generation [dMVDH99] was also implemented,
but since adding all columns also seems to speed up the algorithm, stabilized column
generation wasn’t used during the experiments.

B.2.3. Branch and Bound

The Branch and Bound algorithm we discussed in Section 5.3.6 is a basic branching
algorithm, programmed in a recursive manner. When the algorithm is initialized, the
items are sorted in a descending or ascending order by ratio, size or profit. When the
algorithm is executed, it calculates an upper-bound for the current solution. If the current
lower-bound is equal or higher than the upper-bound, the current execution is stopped
and the recursion goes back a level.

Two relaxations for an upper-bound have been implemented. The simple one takes all
the items that have not been forbidden trough branching and calculates the LP-relaxation
for the problem with only these items. The other one generates a knapsack problem for
each scenario: the main scenario gets a knapsack problem with only items that have
not been decided upon and the remaining space in the main knapsack. For the other
scenarios we calculate a single knapsack Dynamic Programming vector and take the
best values for each scenario. The weighted sum of these calculations is the Recovery
relaxation discussed in Section 5.4.6.

If the upper-bound is greater than the lower-bound, the algorithm continues by taking
the next item from the list. Depending on the order specified in the configuration it
forbids the item and goes into recursion, or it creates a new RecoveryKnapsack node by
adding the item and going in recursion.

B.2.4. Exact Dynamic Programming

The Exact Dynamic Programming algorithm is based on the Dynamic Programming
recurrence from section 5.3.5. Since it is not trivial to implement an array of an arbitrary
number of dimensions, the DPHashTable structure was used to represent a single table
for each item iteration. When an item is passed to the algorithm, a new DPHashTable
is created and an iteration on all PartionRecoveryKnapsacks from the previous table is
started. The recursion is used on all these PartitionRecoveryKnapsacks and the result
are added to the new table. At the end of the iteration, the previous table makes way for
the new table.

B.2.5. Iterative Dynamic Programming

The Iterative Dynamic Programming is an algorithm that uses the Dynamic Programming
recurrence from 5.4.1. While this recurrence is invalid for solving the problem to optimality,
it gives an approximation of the solution value. Besides that, the algorithm can give an
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optimal solution if the order of the items is correct: if you iterate trough the items that
are in the optimal solution before you iterate trough the other items, the resulting table
will contain the optimal solution, since it can’t be dominated by other solutions.

Because the order is important, we will consider the three ways to sort the items.
After each iteration trough all items, we will reverse the order of the items, so different
orderings are tried and used.

Another way to use the algorithm is to shuffle all the items after each iteration in a
random fashion, hoping that a good order is reached during one of the iterations, which
will result in a nice solution.

B.2.6. Hillclimbing

The Hillclimbing algorithms uses iterative improvement. The neighborhood of a solution
are all solutions to which an item is added (if the capacity constraint allows it), or in
which an unused item and a used item are swapped (if the new item has a higher profit
and the capacity constraint allows it). It is possible to ignore the swaps, but in that case
the algorithm just greedily adds the items with the highest values.

To make the Hillclimbing perform better, we add an random restart feature to it.
Random restart means that a random starting solution is used, which is improved after-
ward. The best solution of this process will be the ultimate solution to the Hillclimbing
process. To make swaps possible, the Hillclimbing algorithm makes use of the Muta-
bleRecoveryKnapsack implementation, where a swaps is just a remove followed by an
add operation.

B.2.7. Simulated Annealing

The Simulated Annealing algorithm uses three types of operations: adding items, removing
items and swapping items. Since Simulated Annealing allows decreasing the value of a
solution and removing an item from a MutableRecoverKnapsack can take a lot of time,
it is wise to take the random threshold, estimate a lower bound on the decrease of the
solution value and decide if the new solution might be accepted, before calculating the
real value of the solution. To methods were implemented to get a random neighbor: one
method is to generate all possible transformations on the current solution and pick one
add random. The other method is a Las Vegas algorithm [Bab79] that creates random
transformations until one that is feasible feasible is found.

Two possible cooling schemes were implemented: a linear cooling scheme and an
exponential cooling scheme [RN03]. The exponential cooling scheme multiplies the
current amount of energy by a certain value, probably close to 1. The linear cooling
scheme subtracts a certain value, probably close to 0, from the current energy. There
is an initial amount of energy and an amount of energy that when reached stops the
algorithm. Besides this, the algorithm allows the specification of a number of steps before
which cooling is done and the algorithm also allows the specification of a maximum
number of steps that can be done without improving the best solution found.

To improve the chance to reach local optima, an additional operation was implemented,
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which was given a chance parameter. If this operation was chosen, the algorithm would
perform an iterative improvement on the current solution, to enforce that the current
solution becomes a global optimum. This way the algorithm could be tweaked to find
better solutions in certain cases.

B.2.8. Tabu Search

The Tabu-Search algorithm takes two arguments: the length of the recovery list k and
a maximum number of steps. The operations Tabu Search can perform on the current
solution are the addition of an item, the removal of an item and possibly swapping an used
item for an unused item. Swapping can be turned on or off. The usage of the maximum
number of steps can also be selected: it can be the number of steps the algorithm does
before termination, or it can be number of steps since the last improvement.

The current solution of the Tabu Search algorithm is a single MutableRecoveryKnapsack.
The tabuList contains simple HashSets of items, which makes comparing solutions more
efficient.
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C. Detailed Proofs

C.1. Bellman Recurrence

We will show that the following variant of the Bellman-Recurrence is correct.

A(i, 0) = 0

A(0, b) = −∞ ( for b 6= 0)

A(i, b) = max{A(i− 1, b), A(i− 1, b− ai) + ci}

Proof. We want to show that for a certain index i on the item-set I, A(i, b) gives the
optimal value for item-set size b. We will do this using mathematical induction.

Base case For i = 1, we only consider one item in I. The only possible sets are ∅ at
b = 0 and {1} at b = a1. These two cases are represented by the recurrence for
i = 1 and all other cases are represented by a value of −∞, which is correct.

Inductive Step For a certain i, we assume that for all possible values b the value of
A(i − 1, b) is optimal. Under this assumption we will show that for all possible
values b the value of A(i, b) will also be optimal.

We start with the assumption that for some value of b, A(i, b) is not equal to the
optimal value z∗b for the items 1 to i. We know that b > 0, because for b = 0 the
only possible value is 0, so A(i, 0) will be optimal according to the recurrence. Since
b > 0, we know that A(i, b) is the maximum of A(i− 1, b) and A(i− 1, b− ai) + ci.
We now have two cases:

1. Item i is not in the item-set that corresponds with z∗b . In this case z∗b
corresponds to an item-set which only contains items in the range of 1 to
i− 1. Since A(i− 1, b) was considered for the value of A(i, b), we know that
z∗b > A(i− 1, b). However, we also know that z∗b is a valid value for A(i− 1, b),
so this contradicts our assumption that for all b we have that A(i − 1, b) is
optimal.

2. Item i is in the item-set that corresponds with z∗b . If this is the case, we can
remove i from the item-set. We now get an item-set that contains only items
from 1 to i− 1 and has value z∗b − ci, since item i was removed. We also know
that A(i, b)− ci < z∗b − ci. However, A(i− 1, b−ai) + ci was considered for the
value of A(i, b), so it must be the case that A(i− 1, b− ai) < z∗b . This means
that we can construct an item-set from z∗b that is better than the item-set that
corresponds to A(i−1, b−ai), which is a contradiction against our assumption
that for all b the value A(i− 1, b) is optimal.

We now have derived that the values for i = 1 are correct, and have also shown that if
the values for i are correct if the values for i− 1 are correct. Thus we have completed
the inductive proof.
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C.2. Balanced SSP Algorithm Completeness

Let us consider the correctness of the algorithm from Section 5.2.2. Suppose there is some
item-set I∗ ⊂ I that is the optimal solution. Let us define a current Î that corresponds
to the split solution x̂. If Î is equal to I∗, we are done. Now, as long as Î is not equal
to I∗, there are two possibilities:

∑
i∈Î ai ≤ b or

∑
i∈Î ai > b. In the first case, we add

the item with the lowest index that is in I ′, but not in Î. In the second case, we remove
the item with the highest index that is in Î but not in I ′. If the operation for the first
case cannot be performed, we have that Î contains items not in I∗ (since it is not equal
to I∗), so I∗ must be a strict subset of Î. Since Î is feasible, this situation contradicts
the assumption that I ′ is optimal, because Î is larger and feasible. If the operation for
the second operation cannot be performed, we have that Î must be a strict subset of
I∗. But since Î is already infeasible, so must be the case for I ′, which again contradicts
the assumption that it is optimal. Since the state I∗ must be reachable from state Î
and since the added items must have ascending indices, while the removed items have
descending indices, the algorithm has the possibility to find item-set I∗. While item-set
I∗ can be dominated by an item-set I ′, but this can only happen if I∗ and I ′ have equal
size. Since we consider the subset sum problem, item-set I ′ is just as good as item-set I∗.

C.3. Lagrangian Relaxation of RKP-R

In Section 5.4.4, we discussed an alter Let us consider the Langragean Dual Problem for
this alternative formulation of the RKP-R, where the capacity constraints are relaxed.
Our Lagrangean Dual Problem min z(λ) is the following

z(λ) = max
∑
i∈I

(ci −
∑
s∈S′

λsai)xi +
∑
i∈I

∑
s∈S

(λsai − psci)ȳsi +
∑
s∈S′

λsbs

s.t. ȳsi ≤ xi, ∀s ∈ S, ∀i ∈ I

We will start by removing the ȳsi variables from the problem.
To make our life easier we will define helper sets Ŝi for some i ∈ I and Îs for some

s ∈ S that depend on the current Lagrangian multipliers. We will use these sets to make
a distinction between variables that will be put to 1 and variables that will be put to 0.

Helper Sets

s ∈ Ŝi ↔ λsai > psci for some i ∈ I
i ∈ Îs ↔ λsai > psci for some s ∈ S

We begin with a simple observation: since the knapsack constraints are gone we are
free to put all our xi variables to 1 and put all ȳsi variables to 1 if the corresponding xi
variable is set to 1. Doing this might not result in the optimal value, because setting
certain variables to 1 might have a negative contribution because of the Lagrangian
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multipliers. Let us first consider the ȳsi variables:

ȳsi = 1 is profitable iff xi = 1 ∧ λsai > psci

or

ȳsi = 1 is profitable iff xi = 1 ∧ s ∈ Ŝi

Using this property we can rewrite our objective function to a tighter formulation, by
tightening the scope of the summation over the ȳsi by removing ȳsi variables from it that
will be zero.

z =
∑
i∈I

(ci −
∑
s∈S′

λsai)xi +
∑
i∈I

∑
s∈Ŝi

(λsai − psci)ȳsi +
∑
s∈S′

λsbs

Now let us consider the xi variables. Whatever happens, we are allowed to set a
variable xi to 1, so the only question here is if this is profitable. Putting xi to 1 adds
ci−

∑
s∈S′ λsai to the objective function. If this expression has a positive value, we know

it is a good idea to put xi to 1. However, if this expression has a negative value it might
be a good idea to put it to 1 anyway if this allows us to set enough ȳsi variables to 1 to
compensate for the loss. Using a helper set Ŝi we can determine which ȳsi variables will
correspond to a scenario that will give a positive contribution. We now get the property

xi = 1 is profitable iff ci −
∑
s∈S′

λsai +
∑
s∈Ŝi

(λsai − psci) > 0

Using the expression
∑

s∈Ŝi
(λsai − psci), we express the total value of the ȳsi variables

that are profitable given the corresponding xi variable is set to 1. Besides giving a
powerful tool for determining if a xi variable should be set to 1, it also gives us the
possibility to remove the ȳsi variables from the problem entirely. Doing this we get the
objective function

z =
∑
i∈I

(ci −
∑
s∈S′

λsai +
∑
s∈Ŝi

(λsai − psci))xi +
∑
s∈S′

λsbs

Since the only remaining variables in the problem are the xi variables, we isolate the
effective price c′i for certain variable xi

c′i = (ci −
∑

s∈S′ λsai) +
∑

s∈Ŝi
(λsai − psci)

extended to

c′i = ci −
∑

s∈S′ λsai +
∑

s∈ŝi λsai −
∑

s∈Ŝi
psci

simplified to

c′i = ci −
∑

s∈Ŝ−1
i
λsai −

∑
s∈Ŝi

psci

The nice thing we see is that we have a summation over Ŝi and one over Ŝ−1
i , which

implies that for a single item i each scenario s either contributes psci or λsai, depending
if it is or is not in the set Ŝi. Now that we have reduced the Lagrangian relaxation of
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our problem to a much simpler form, we will take a look at the Lagrangian dual problem,
which states that we should choose our Lagrangian multipliers in such a fashion that the
value of the solution of the relaxed problem is minimized. To achieve this we will take a
look at the impact changing a certain multiplier has on the value of the relaxed problem.
Let us first consider a case where we change a certain multiplier λs by ∆λs in such a way
that Îs remains unchanged. Doing this we can clearly see that we only have to recount
all factors that contain λs. Doing this we derive the effect on the objective function ∆z

∆z = ∆λsbs −
∑

i∈Î−1
s

∆λsai in case Îs remains the same

Taking a look at the definition of c′i, we can see that changing a certain multiplier
λs only changes the c′i of the items with an index i such that s ∈ Ŝ−1

i , since the items
without such an index contribute −psci to the objective, which is not dependent on λs.

Let us now consider the case where we change a certain λs by ∆λs in such a way that
only a single item j is transferred from Î−1

s to Îs. In this case we have the same effect on
all λs factors, but we also have some item that loses its λs factorization and now counts
for psci.

∆z = ∆λsbs −
∑

i∈Î−1
s

∆λsai + (λs −∆λs)ai − psci
in case only item j is transferred from Î−1

s to Îs

In our next step we will consider the set ∆Î−1
s given some ∆λs applied to some λs as

the set that contains all items that are transferred from Î−1
s to Îs. Using this definition

we finally get the definite relation between ∆z and ∆λs.

∆z = λsbs −
∑

i∈Î−1
s

∆λsai +
∑

i∈∆Î−1
s

(λs −∆λs)ai −
∑

i∈∆Î−1
s
psci

where ∆Î−1
s contains the items transferred from Î−1

s to Îs

Now that we have ∆z, we can split our objective function z into components that
depend on a single multiplier λs

z =
∑

s∈S′ zs

where

zs = λsbs −
∑

i∈Î−1
s
λsai −

∑
i∈Îs psci

Because the Lagrangian dual problem tells us to minimize the value and we have a
closed formula for the contribution of a certain multiplier λs, we only have to choose each
λs in such a fashion that the corresponding zs is minimized. When we look at the helper
sets, we see that λs divides Î−1

s and Îs and also orders the items according to their ratio’s
ci
ai

. For a certain s, the contribution of a single item i lies in the range {0...− psci}. If we

have λs >
psci
ai

, item i will be in Îs and thus contribute −psci. However if λs <
psci
ai

, item
i will contribute −λsai, which is of course smaller than psci. Using this we can express
the condition that states when raising λs will lower zs.
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↑ λs leads to ↓ zs while λsbs ≤
∑
i∈Î−1

s

λsai

Theorem C.1. To minimize the value of the Lagrangian dual problem, we should set
multiplier λs to ps

cis
ais

where is is the split item for bs.

Proof. Since the items in Îs and Î−1
s are divided according to their ratio’s and the

condition states that we should fill Î−1
s to the point where the sum of the weights of the

items exceeds bs. That means we should take the item that fills the item-set of scenario
s up to the value bs as the dividing item for Îs and Î−1

s . The proper value for λs thus
becomes ps

cîs
aîs

where îs is the split item for bs.

C.4. A straightforward reduction of 3-Partition to RKP-R fails

Let us consider the question whether the RKP-R is NP-hard in the strong or in the weak
sense. Since it is a generalization of the regular KP, it is clear that it is at least NP-hard
in the weak sense.

The article [GJ78] states that we can prove a problem to be NP-hard in the strong
sense if we are able to find a polynomial time reduction from a problem that is NP-hard
in the strong sense. A classic example of such a problem is 3-Partition, which states:

3-Partition Input: Given 3N integers a1, . . . , a3N that sum up to B =
∑3N

i=1 ai.
Question: Is there a partition into triplets such that each integer i ∈ 1, . . . , 3N is in

exactly one triplet and for each triplet (ai, aj , ak) we have ai + aj + ak = B
N ?

Now the straightforward way to do this is by using the RKP-R as a Subset Sum problem
by fixing the ratio of our items to 1. We consider all integers from our 3-Partition problem
as items. Additionally we create N scenarios, such that for each scenario s we have
bs = (|S| − s)BN . Now in the case of N = 2, we know there is a solution to 3-Partition if
and only if the RKP-R gives an exact filling for both scenarios, due to the proof from
Section 5.3.5.

However, for N > 2, this approach fails. Consider the following example: we have
N = 3 and our integers are {6, 4, 6, 4, 6, 4, 6, 4, 5}. This sums nicely to 45, so we have
B
N = 15. We create scenarios b0 = 45, b1 = 30 and b2 = 15 for the RKP-R. This gives
us an exact solution: all items as an initial solution, the item-set {6, 4, 6, 4, 6, 4} for
scenario 1 and the item-set {6, 4, 5} for scenario 2. This contradicts the fact that we
have no solution to 3-Partition, due to the single odd number 5 and the requirement of 3
partitions with the requirement to have an odd sum.
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